项目名称: 超高记录密度亚铁磁薄膜超快全光磁化反转动力学研究
项目编号: No.61308038
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 无线电电子学、电信技术
项目作者: 徐初东
作者单位: 华南农业大学
项目金额: 26万元
中文摘要: 现代信息技术的飞速发展对超高密度超高速信息存储提出新的挑战。最近研究报道磁光记录材料GdFeCo亚铁磁薄膜超快全光磁化反转的实现,为开发超高密度超高速信息存储器件提供了方向,成为当今国际磁信息存储研究的最新热点。本项目研究拟应用飞秒时间分辨磁光克尔光谱技术结合光-磁同步动态磁化磁光测试系统,对磁光记录材料高矫顽力的GdFeCo和TbFeCo亚铁磁薄膜的全光磁化反转超快动力学过程进行系统,深入的研究。其中,自主研发的光-磁同步测试系统的应用是开展无外加磁场作用的超快磁化动力学研究的前提和优势。具体将通过全光磁化反转对激发脉宽和激发流密度的依赖性研究,以及材料结构参数对全光磁化反转的影响研究,弄清为什么目前报道的全光磁化反转在之前类似的实验中都没观测到,以及全光磁化反转是GdFeCo的特性还是亚铁磁薄膜的共性,探索全光磁化反转的实现机理以及影响因素。预计研究结果将具有重要的科学意义和应用价值。
中文关键词: 全光磁化反转;超快热诱导磁化反转;飞秒激光泵浦-探测技术;原子自旋动力学模型;
英文摘要: The rapid development of modern information technology has posed a new challenge to ultrahigh-density and ultrafast-rate recording. The latest reports about all-optical magnetization reversal by ultrafast femtosecond laser heating GdFeCo ferrimagnetic film have paved a new way for ultrahigh-density and ultrafast-rate recording, which is becoming a new hot issue. In our study, the femtosecond laser pump-probe time-resolved spectroscopy combined with photo-magnetic synchronized time-resolved magneto-optical Kerr effect technique will be applied to study the ultrafast all-optical magnetization reversal dynamics of high coercivity magneto-optical recording material - - GdFeCo and TbFeCo ferrimagnetic films. The application of an independently developed photomagnetic synchronized time-resolved magneto-optical Kerr effect technique is the prerequisite and advantage for our research of ultrafast magnetization dynamics without magnetic field. Specifically, that is the study of the dependence of laser pulse width and pump fluence on all-optical magnetization reversal dynamics and the study of the influence of samples' structure on the magnetization reversal dynamics, through which we are intended to find out why the latest report on all-optical magnetization reversal cannot be found in the previously similar experiments
英文关键词: All-optical magnetization switching;ultrafast thermal induced magnetization switching;femtosecond laser pump-probe technology;atomic spin dynamics model;