项目名称: 全自动微下拉晶体光纤生长炉的研制与应用

项目编号: No.51227002

项目类型: 专项基金项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 陶绪堂

作者单位: 山东大学

项目金额: 280万元

中文摘要: 高能定向激光在军事国防、工业加工等领域具有重大应用价值,因此制备高质量的激光光纤材料成为当前光纤材料领域的研究热点之一。微下拉技术是一种新颖高效的晶体生长手段,可以生长高质量的晶体光纤材料,其性能远优于普通的玻璃光纤。新型微下拉技术该技术具有如下优点:使用的原料非常少;生长速度快;贵金属坩埚小;光纤直径从微米至毫米可调;可以生长多种闪烁、激光、金属合金等新颖晶体。由于该技术较新,目前尚无成熟的商品化设备,国际上各研究单位均为自主研制或与企业联合研制。目前国内尚没有微下降技术生长功能晶体的研究报道。鉴于我们已成功自主研制了全自动提拉炉以及布里奇曼炉,积累了丰富的晶体设备研制经验;而且课题组主要成员留学期间已从事了两年的微下拉晶体光纤生长研究,对该技术有了较全面的把握。因此特申请自主研制微下拉晶体光纤生长炉,该设备的研制对于丰富和提升我国晶体材料,尤其是晶体光纤材料的研究的水平具有重要的意义。

中文关键词: 微下拉;设备;晶体生长;单晶光纤;

英文摘要: The high power directional laser has the significant application values in national defense and laser industry machining, so the fabrication of high-quality laser fiber becomes one of the hot topics in recent years. The micro-pulling-down technology (μ-PD) is a novel and high-efficiency method for crystal growth, especially for the high optical quality crystal fiber growth, which is much better than the common glass optical fibers. The μ-PD has several technological merits, like the small quantity of raw materials required, high-speed growth, small crucible needed, and diameter controlling for size and shape. In addition many kinds of functional crystals can be grown by this method, including scintillation and laser crystal, semiconductor crystal, metal alloy fibers, and even novel high-melting rare-earth sesquioxides. Unfortunately, there is still no commercial μ-PD furnace because it is a new developing technology, so most of the μ-PD furnaces were home-made in the world''s research laboratories. To the best of our knowledge, no work on μ-PD technology was reported up to now in China. In consideration of our work experiences on manufacture of Czochralaki and Bridgman furnaces, and the skills on crystal fiber growing by μ-PD method, we will build a μ-PD furnace with automatic diameter control (ADC) function i

英文关键词: Micro-pulling-down;Equipment;Crystal growth;Single crystal fiber;

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
115+阅读 · 2022年4月8日
《智能制造机器视觉在线检测测试方法》国家标准意见稿
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
数据中心传感器技术应用 白皮书
专知会员服务
38+阅读 · 2021年11月13日
专知会员服务
83+阅读 · 2021年8月8日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
医疗知识图谱构建与应用
专知会员服务
374+阅读 · 2019年9月25日
【转发】《太阳能》SNEC2022光伏专刊征稿通知!
光伏专委会CPVS
0+阅读 · 2021年12月24日
【北大】知识图谱的关键技术及其智能应用
专知
111+阅读 · 2019年9月19日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2022年1月3日
Arxiv
56+阅读 · 2021年5月3日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
小贴士
相关主题
相关VIP内容
军事知识图谱构建技术
专知会员服务
115+阅读 · 2022年4月8日
《智能制造机器视觉在线检测测试方法》国家标准意见稿
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
数据中心传感器技术应用 白皮书
专知会员服务
38+阅读 · 2021年11月13日
专知会员服务
83+阅读 · 2021年8月8日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
医疗知识图谱构建与应用
专知会员服务
374+阅读 · 2019年9月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
24+阅读 · 2022年1月3日
Arxiv
56+阅读 · 2021年5月3日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
微信扫码咨询专知VIP会员