项目名称: 各向异性超材料的太赫兹宽频慢光性能研究

项目编号: No.11474116

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 陈林

作者单位: 华中科技大学

项目金额: 80万元

中文摘要: 太赫兹波在物理学、材料科学、通讯等领域具有重大的应用前景,但是由于极其缺乏功能器件导致无法得到实际应用。近几年,人工超材料在开发太赫兹功能器件方面展现出巨大的潜力,引起了广泛的研究兴趣。然而,这些器件受到电磁共振的制约只能窄带工作,限制了器件的应用领域。本项目拟探索利用金属/电介质多层结构的各向异性超材料设计新型太赫兹宽频慢光波导,进一步构建周期性超材料,实现对太赫兹宽频光波的耦合,并降低传输速度。与已经报道的超材料太赫兹慢光结构相比,此新型慢光结构是基于各向异性超材料实现慢光的原理,可以彻底摆脱基于电磁共振的超材料慢光对单一频率的依赖,实现宽频慢光。本项目的创新点在于设计新型太赫兹超材料慢光结构,拓宽慢光的工作频带,通过研究其宽频慢光工作机理,不但为设计高性能太赫兹慢光器件提供理论基础,而且为其实用化具有一定的指导意义。

中文关键词: 超材料;太赫兹;慢光;宽频

英文摘要: Terahertz waves can not be practically applied due to the extreme lack of functional devices, although it has great potential applications in physics, materials science, communications, etc. In recent years, artificial metamaterials have shown great potential in terms of developing terahertz functional devices, hence generating a broad range of research interest. However, owing to the restriction of electromagnetic resonance, these devices can only work within a narrow bandwidth, which limits their application field. This project intends to explore the design of novel terahertz wide-band slow light waveguides based on metal/dielectric multilayer anisotropic metamaterials, and further construct periodical metamaterials to realize broadband coupling with terahertz waves, and then reduce its propagation velocity.These novel slow light structures are capable of realizing wide-band slow light,completely different from the dependence on a single frequency in terahertz metamaterial slow-light structures based on electromagnetic resonance reported before.The key point of this project is to develop novel terahertz metamaterial slow light structures and extend the working bandwidth of slow light, thus providing the theorectic guidance to design terahertz high-performance slow light devices by clarifying its intrinsic mechanism, and benfiting to practical applications of terahertz slow light devices as well.

英文关键词: Metamaterial;Terahertz;Slow light;Broadband

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
123+阅读 · 2021年8月4日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2021年2月8日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Tikhonov Regularization of Circle-Valued Signals
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月7日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
123+阅读 · 2021年8月4日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2021年2月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员