项目名称: 红外-可见双波段透明AlON陶瓷的低温烧结制备和光学性能调控

项目编号: No.61475097

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 施鹰

作者单位: 上海大学

项目金额: 80万元

中文摘要: 多晶透明氧氮化铝(AlON)陶瓷是一类目前备受关注的新型可见-红外双波段窗口材料,研发高光学透过率的AlON陶瓷并实现对其性能的调控是该材料获得应用的关键。本项目将研究AlON亚微米粉体的低温湿化学合成方法及其多晶陶瓷材料的透明化途径,力求通过优化湿化学合成过程中的理化参数和烧结助剂的组成设计实现亚微米AlON粉体的低温合成和低温致密化。针对AlON氮氧化物的理化特性和结构特征发展出具有针对性的多晶陶瓷透明化烧结方法,研究多晶AlON粉体及透明陶瓷中的元素分布状态、物相演变和显微结构特征,揭示AlON透明陶瓷力学、热学、光学和介电性能的影响因素。通过有效的组成设计和显微结构调控,在确保材料综合性能优良的基础上实现在可见光波段和红外波段上的高光学透明性,为多晶AlON透明陶瓷材料应用于可见-红外双波段窗口材料提供关键的科学基础和技术依据。

中文关键词: 透明陶瓷;窗口材料;低温烧结;性能调控;双波段

英文摘要: Polycrystalline transparent aluminum oxynitride (AlON) ceramics is a kind of attractive promising dual-mode wave-transparent window material. It is of great importance to fabricate AlON transparent ceramic with high optical transmittance and achieve efffective controlling on its comprehensive properties. It is our objective in this proposal to investigate the synthesis of submicron AlON powder under low temperatures and densification approach of transparent AlON ceramics under low temperatures by optimizing the relevant processing conditions during wet chemical processig and chemical compositions of sintering aids in dessification course. The practical sintering method will be developed according to its physical and chemical merits to reveal the element distribution feature, phase evolution and microstructural characteristics in AlON ceramics. The factors influencing its mechanical, optical and dielectric properties will be elucidated in detail. Based on a good combination of good mechanical, thermal and dielectric properties of AlON ceramics, the excellent optical transmittance in visible and infrared wave regions will attain, which will provide scientific foundation and technological basis for its applications as infrared-visible dual mode transparent window.

英文关键词: Transparent Ceramics;Window Materials;Low Temperature Sintering;Property Design;Dual Waveband

成为VIP会员查看完整内容
1

相关内容

专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
29+阅读 · 2020年8月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
15+阅读 · 2020年2月6日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员