项目名称: 纳米材料光电特性辛时域有限差分法的建模与分析

项目编号: No.61301062

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 沈晶

作者单位: 合肥师范学院

项目金额: 24万元

中文摘要: 纳米器件是电子器件小型化的必然趋势。纳米器件本身尺寸极小,传统半导体物理中的建模方法已经不能有效地解决问题,采取实验手段直接测量器件的各种性能又比较困难。因此,精确和高效数值方法的研究是现代纳米器件建模的重要课题。纳米器件的建模是一项极其复杂的多物理问题,目前多物理场的算法研究,都是基于方程本身独立展开,并不面向明确有意义的多物理耦合问题。基于多物理问题耦合方程的研究是一个亟待解决的课题。本课题通过构建精确、快速、高效和统一的辛时域有限差分框架,求解麦克斯韦方程和量子力学方程(薛定谔方程、冯诺依曼方程)的耦合方程,并将该算法应用于纳米材料(如碳纳米管、石墨烯)的多物理建模,探讨其光电作用的机理。因而本课题有利于电磁学和量子力学等多个学科的交叉研究,促进新的分析方法产生,同时,将本课题设计的数值方法应用于纳米材料光电特性的分析,对纳米器件的建模、设计和优化有着较为重要的意义。

中文关键词: 薛定谔方程;时域有限差分法;辛积分;多物理建模;纳米材料

英文摘要: Nanodevices are the destined trend of the miniaturization of electronic devices. The size of nanodevices is extremely small, and therefore the traditional approach for semiconductor physics modeling failed. Taking direct experiments to get various properties of nanodevices becomes more and more difficult. Hence, studying an accurate and efficient numerical method is an important topic of the modern nano-device modeling. Simulating nanoscale devices is an extremely complex multi-physics problem. Currently, the study of multi-physics field only considered the equations themselves, but not definite and meaningful multi-physical problems. Thus solving the coupled equations arising in real-world multi-physics problems is an urgent issue. The project aims at solving Maxwell's equations and quantum mechanical equations (Schr?dinger equation, Von Neumann equation) self-consistently by using fast, efficient, and unified symplectic finite-difference framework. Furthermore, we will apply the multiphysics model to nano-material and nanostructures. Based on our multi-physics models, we will design new device configurations through deep physical understanding of the interplay between electrons and photons. The project has important significances in theoretical research and engineering applications of nanodevices. On one hand,

英文关键词: Schrodinger equation;finite difference time domain;sympletic integration;multiphysics modeling;nano-meterial

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
FPGA加速深度学习综述
专知会员服务
67+阅读 · 2021年11月13日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
FPGA加速深度学习综述
专知
3+阅读 · 2021年11月13日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
FPGA加速深度学习综述
专知会员服务
67+阅读 · 2021年11月13日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员