【深度学习】AI 实践者需要掌握的10大深度学习方法

2017 年 11 月 26 日 产业智能官 新智元

新智元编译 

来源:towardsdatascience.com

编译:马文  文强

【新智元导读】本文总结了10个强大的深度学习方法,包括反向传播、随机梯度下降、学习率衰减、Dropout、最大池化、批量归一化、长短时记忆、Skip-gram、连续词袋、迁移学习等,这是AI工程师可以应用于他们的机器学习问题的。


过去10年,人们对机器学习的兴趣激增。几乎每天,你都可以在各种各样的计算机科学课程、行业会议、华尔街日报等等看到有关机器学习的讨论。在所有关于机器学习的讨论中,许多人把机器学习能做的事情和他们希望机器学习做的事情混为一谈。从根本上讲,机器学习是使用算法从原始数据中提取信息,并在某种类型的模型中表示这些信息。我们使用这个模型来推断还没有建模的其他数据。


神经网络是机器学习的一种模型,它们至少有50年历史了。神经网络的基本单元是节点(node),基本上是受哺乳动物大脑中的生物神经元启发。神经元之间的连接也以生物的大脑为模型,这些连接随着时间的推移而发展的方式是为“训练”。


在20世纪80年代中期和90年代初期,许多重要的架构进步都是在神经网络进行的。然而,为了得到好的结果需要大量时间和数据,这阻碍了神经网络的采用,因而人们的兴趣也减少了。在21世纪初,计算能力呈指数级增长,计算技术出现了“寒武纪大爆发”。在这个10年的爆炸式的计算增长中,深度学习成为这个领域的重要的竞争者,赢得了许多重要的机器学习竞赛。直到2017年,这种兴趣也还没有冷却下来;今天,我们看到一说机器学习,就不得不提深度学习。


作者本人也注册了Udacity的“Deep Learning”课程,这门课很好地介绍了深度学习的动机,以及从TensorFlow的复杂和/或大规模的数据集中学习的智能系统的设计。在课程项目中,我使用并开发了用于图像识别的卷积神经网络,用于自然语言处理的嵌入式神经网络,以及使用循环神经网络/长短期记忆的字符级文本生成。


本文中,作者总结了10个强大的深度学习方法,这是AI工程师可以应用于他们的机器学习问题的。首先,下面这张图直观地说明了人工智能、机器学习和深度学习三者之间的关系。



人工智能的领域很广泛,深度学习是机器学习领域的一个子集,机器学习又是人工智能的一个子领域。将深度学习网络与“经典的”前馈式多层网络区分开来的因素如下:

  • 比以前的网络有更多的神经元

  • 更复杂的连接层的方法

  • 用于训练网络的计算机能力的“寒武纪大爆炸”

  • 自动特征提取


这里说的“更多的神经元”时,是指神经元的数量在逐年增加,以表达更复杂的模型。层(layers)也从多层网络中的每一层都完全连接,到在卷积神经网络中层之间连接局部的神经元,再到在循环神经网络中与同一神经元的循环连接( recurrent connections)。


深度学习可以被定义为具有大量参数和层的神经网络,包括以下四种基本网络结构:

  • 无监督预训练网络

  • 卷积神经网络

  • 循环神经网络

  • 递归神经网络


在本文中,主要介绍后三种架构。基本上,卷积神经网络(CNN)是一个标准的神经网络,通过共享的权重在空间中扩展。CNN设计用于通过内部的卷积来识别图像,它可以看到图像中待识别的物体的边缘。循环神经网络(RNN)被设计用于识别序列,例如语音信号或文本。它的内部有循环,这意味着网络上有短的记忆。递归神经网络更像是一个层级网络,在这个网络中,输入必须以一种树的方式进行分层处理。下面的10种方法可以应用于所有这些架构。





1. 反向传播





反向传播(Back-prop)是一种计算函数偏导数(或梯度)的方法,具有函数构成的形式(就像神经网络中)。当使用基于梯度的方法(梯度下降只是方法之一)解决优化问题时,你需要在每次迭代中计算函数梯度。



对于神经网络,目标函数具有组合的形式。如何计算梯度呢?有两种常用的方法:(i)解析微分(Analytic differentiation)。你已经知道函数的形式,只需要用链式法则(基本微积分)来计算导数。(ii)利用有限差分进行近似微分。这种方法在计算上很昂贵,因为函数值的数量是O(N),N指代参数的数量。不过,有限差分通常用于在调试时验证back-prop实现。





2. 随机梯度下降法





一种直观理解梯度下降的方法是想象一条河流从山顶流下的路径。梯度下降的目标正是河流努力达到的目标——即,到达最底端(山脚)。


现在,如果山的地形是这样的,在到达最终目的地之前,河流不会完全停下来(这是山脚的最低点,那么这就是我们想要的理想情况。)在机器学习中,相当从初始点(山顶)开始,我们找到了解决方案的全局最小(或最佳)解。然而,可能因为地形的性质迫使河流的路径出现几个坑,这可能迫使河流陷入困境。在机器学习术语中,这些坑被称为局部极小值,这是不可取的。有很多方法可以解决这个问题。




因此,梯度下降很容易被困在局部极小值,这取决于地形的性质(用ML的术语来说是函数的性质)。但是,当你有一种特殊的地形时(形状像一个碗,用ML的术语来说,叫做凸函数),算法总是保证能找到最优解。凸函数对ML的优化来说总是好事,取决于函数的初始值,你可能会以不同的路径结束。同样地,取决于河流的速度(即,梯度下降算法的学习速率或步长),你可能以不同的方式到达最终目的地。这两个标准都会影响到你是否陷入坑里(局部极小值)。





3. 学习率衰减






根据随机梯度下降的优化过程调整学习率(learning rate)可以提高性能并减少训练时间。 有时这被称为学习率退火( learning rate annealing)或自适应学习率(adaptive learning rates)。训练过程中最简单,也是最常用的学习率适应是随着时间的推移而降低学习度。 在训练过程开始时使用较大学习率具有进行大的改变的好处,然后降低学习率,使得后续对权重的训练更新更小。这具有早期快速学习好权重,后面进行微调的效果。


两种常用且易于使用的学习率衰减方法如下:

  • 逐步降低学习率。

  • 在特定的时间点较大地降低学习率。





4 . Dropout





具有大量参数的深度神经网络是非常强大的机器学习系统。然而,过拟合在这样的网络中是一个严重的问题。大型网络的使用也很缓慢,这使得在测试时将许多不同的大型神经网络的预测结合起来变得困难。Dropout是解决这个问题的一种方法。



Dropout 的关键想法是在训练过程中随机地从神经网络中把一些units(以及它们的连接)从神经网络中删除。这样可以防止单元过度适应。在训练过程中,从一个指数级的不同的“稀疏”网络中删除一些样本。在测试时,通过简单地使用一个具有较小权重的单一网络,可以很容易地估计所有这些“变瘦”了的网络的平均预测效果。这显著减少了过拟合,相比其他正则化方法有了很大改进。研究表明,在视觉、语音识别、文档分类和计算生物学等监督学习任务中,神经网络的表现有所提高,在许多基准数据集上获得了state-of-the-art的结果。





5. Max Pooling





最大池化(Max pooling)是一个基于样本的离散化过程。目标是对输入表示(图像,隐藏层输出矩阵等)进行下采样,降低其维度,并允许对包含在分区域中的特征进行假设。



这在一定程度上是为了通过提供一种抽象的表示形式来帮助过拟合。同时,它通过减少学习的参数数量,并为内部表示提供基本的平移不变性(translation invariance),从而减少计算成本。最大池化是通过将一个最大过滤器应用于通常不重叠的初始表示的子区域来完成的。





6. 批量归一化





当然,包括深度网络在内的神经网络需要仔细调整权重初始化和学习参数。而批量标准化有助于实现这一点。


权重问题:无论权重的初始化如何,是随机的也好是经验性的选择也罢,都距离学习到的权重很遥远。考虑一个小批量(mini batch),在最初时,在所需的特征激活方面将会有许多异常值。


深度神经网络本身是有缺陷的,初始层中一个微小的扰动,就会导致后面层巨大的变化。在反向传播过程中,这些现象会导致对梯度的分散,这意味着在学习权重以产生所需输出之前,梯度必须补偿异常值,而这将导致需要额外的时间才能收敛。



批量归一化将梯度从分散规范化到正常值,并在小批量范围内向共同目标(通过归一化)流动。


学习率问题:一般来说,学习率保持较低,只有一小部分的梯度校正权重,原因是异常激活的梯度不应影响学习的激活。通过批量归一化,减少异常激活,因此可以使用更高的学习率来加速学习过程。





7. 长短时记忆





LSTM网络在以下三个方面与RNN的神经元不同:


  • 能够决定何时让输入进入神经元;

  • 能够决定何时记住上一个时间步中计算的内容;

  • 能够决定何时让输出传递到下一个时间步长。


LSTM的优点在于它根据当前的输入本身来决定所有这些。所以,你看下面的图表:



当前时间标记处的输入信号x(t)决定所有上述3点。输入门从点1接收决策,遗忘门从点2接收决策,输出门在点3接收决策,单独的输入能够完成所有这三个决定。这受到我们的大脑如何工作的启发,并且可以基于输入来处理突然的上下文/场景切换。





8. Skip-gram





词嵌入模型的目标是为每个词汇项学习一个高维密集表示,其中嵌入向量之间的相似性显示了相应词之间的语义或句法相似性。Skip-gram是学习单词嵌入算法的模型。


Skip-gram模型(以及许多其他的词语嵌入模型)的主要思想是:如果两个词汇项(vocabulary term)共享的上下文相似,那么这两个词汇项就相似。



换句话说,假设你有一个句子,比如“猫是哺乳动物”。如果你用“狗”去替换“猫”,这个句子仍然是一个有意义的句子。因此在这个例子中,“狗”和“猫”可以共享相同的上下文(即“是哺乳动物”)。


基于上述假设,你可以考虑一个上下文窗口(context window,一个包含k个连续项的窗口),然后你跳过其中一个单词,试着去学习一个能够得到除跳过项外所有项的神经网络,并预测跳过的项是什么。如果两个词在一个大语料库中反复共享相似的语境,则这些词的嵌入向量将具有相近的向量。





9. 连续词袋(Continuous Bag Of Words)





在自然语言处理问题中,我们希望学习将文档中的每个单词表示为一个数字向量,使得出现在相似的上下文中的单词具有彼此接近的向量。在连续的单词模型中,我们的目标是能够使用围绕特定单词的上下文并预测特定单词。



我们通过在一个庞大的语料库中抽取大量的句子来做到这一点,每当我们看到一个单词时,我们就会提取它周围的单词。然后,我们将上下文单词输入到一个神经网络,并预测位于这个上下文中心的单词。


当我们有成千上万的这样的上下文单词和中心词以后,我们就有了一个神经网络数据集的实例。训练神经网络,最后编码的隐藏层输出表示特定单词的嵌入。而当我们对大量的句子进行训练时也能发现,类似语境中的单词得到的是相似的向量。





10. 迁移学习





让我们考虑图像如何穿过卷积神经网络。假设你有一个图像,你应用卷积,并得到像素的组合作为输出。假设这些输出是边缘(edge)。现在再次应用卷积,现在你的输出就是边或线的组合。然后再次应用卷积,你的输出是线的组合,以此类推……你可以把它看作是每一层寻找一个特定的模式。神经网络的最后一层往往会变得非常特异化。如果你在ImageNet上工作,你的网络最后一层大概就是在寻找儿童、狗或飞机等整体图案。再往后倒退几层,你可能会看到网络在寻找眼睛或耳朵或嘴巴或轮子这样的组成部件。



深度CNN中的每一层都逐步建立起越来越高层次的特征表征。最后几层往往是专门针对输入模型的数据。另一方面,早期的图层更为通用。而迁移学习就是当你在一个数据集上训练CNN时,切掉最后一层,在不同的数据集上重新训练最后一层的模型。直观地说,你正在重新训练模型以识别不同的高级特征。因此,训练时间会减少很多,所以当你没有足够的数据或者训练需要太多的资源时,迁移学习是一个有用的工具。




结语




这篇文章简单介绍了深度学习,如果你想了解更多更深层次的东西,建议你继续阅读以下资料:


  • Andrew Beam “Deep Learning 101http://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

  • Andrey Kurenkov “A Brief History of Neural Nets and Deep Learninghttp://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/

  • Adit Deshpande  “A Beginner’s Guide to Understanding Convolutional Neural Networkshttps://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

  • Chris Olah “Understanding LSTM Networkshttp://colah.github.io/posts/2015-08-Understanding-LSTMs/

  • Algobean  “Artificial Neural Networkshttps://algobeans.com/2016/03/13/how-do-computers-recognise-handwriting-using-artificial-neural-networks/

  • Andrej Karpathy “The Unreasonable Effectiveness of Recurrent Neural Networkshttp://karpathy.github.io/2015/05/21/rnn-effectiveness/


深度学习强烈注重技术。对每一个新想法都没有太多具体的解释。 大多数新想法都附带了实验结果来证明它们能够工作。深度学习就像玩乐高。掌握乐高跟掌握其他艺术一样具有挑战性,但入门乐高可是相对容易很多的。祝你学习愉快~

原文:https://towardsdatascience.com/the-10-deep-learning-methods-ai-practitioners-need-to-apply-885259f402c1




人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链






长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市、“智能驾驶”新模式:“财富空间、“特色小镇”、“赛博物理”、“供应链金融”


点击“阅读原文”,访问AI-CPS OS官网





本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





登录查看更多
3

相关内容

【干货书】高级应用深度学习,294页pdf
专知会员服务
149+阅读 · 2020年6月20日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
209+阅读 · 2020年4月26日
【综述】金融领域中的深度学习,附52页论文下载
专知会员服务
161+阅读 · 2020年2月27日
深度学习算法与架构回顾
专知会员服务
77+阅读 · 2019年10月20日
深度学习自然语言处理综述,266篇参考文献
专知会员服务
225+阅读 · 2019年10月12日
万字长文概述NLP中的深度学习技术
机器之心
5+阅读 · 2019年2月28日
AI 从业者都会用到的 10 个深度学习方法
算法与数学之美
7+阅读 · 2018年12月31日
【机器学习】机器学习和深度学习概念入门
产业智能官
11+阅读 · 2018年1月3日
做AI必须要知道的十种深度学习方法
全球人工智能
3+阅读 · 2017年12月3日
【深度学习】做AI必须要知道的十种深度学习方法
产业智能官
19+阅读 · 2017年12月2日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
15+阅读 · 2019年9月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
23+阅读 · 2018年10月1日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
21+阅读 · 2018年8月30日
VIP会员
相关VIP内容
相关论文
Arxiv
22+阅读 · 2019年11月24日
Arxiv
15+阅读 · 2019年9月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
23+阅读 · 2018年10月1日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
21+阅读 · 2018年8月30日
Top
微信扫码咨询专知VIP会员