表情包AI生成器:识别人脸情绪,自动配文字

2020 年 10 月 7 日 量子位
梅宁航 发自 凹非寺 
量子位 报道 | 公众号 QbitAI

Meme表情包,兴盛于各大社交网站,但自己动手制作费时耗力。

“急民之所急”,表情包自动生成器出现了。

以往的此类生成器,只是简单的图片配文字,总觉得有点文不对题。

这一次,作者巧妙利用卷积神经网络,做到了识别图片中的情绪(仅限人脸哟),这样配上的文字可信度就比较契合语境了。

斗图走一波。

非常高兴的大姚

丞相在笑

团长很愤怒

静静的看着你

从高兴到平常心,机器在分别判定图中人物的情绪。

有点意思。

操作流程

把大象🐘装冰箱分三步,制作属于自己的表情包也只要三步。

第一步,打开meme生成器网站,熟悉一下英文界面;

第二步,上传一张清晰的人脸图像,注意一定是人脸哟,奇怪的东西不要上传。

第三步,点击generate meme,静静等待饱含深情的表情包。

好了就是这么简单,当然,这里仅供演示,更多玩法,自行探索。

应该能看到,这款meme不同以往的特点是文字可以匹配情绪。

人脸的情绪判别

作者使用了两类数据集进行训练,一部分是高兴,一部分是悲伤。

两类数据集的规模必须确保较为平均,否则二分类的结果会严重偏向一方,准确度会下降。

在此过程中,会出现两个问题:

过采样,在整个数据样本中,一部分数据集过多,训练结果会更加偏向多的那部分。
欠采样,把大数类的数据减少到与小数类的数据量相匹配,减少样本量。

当然,确保平衡最重要,如果进行欠采样,总样本会减少,有可能让模型降低泛化能力。

这时候,你需要数据增强技术来人工增加样本数据。

一只猫,变成六只。

在获得足够数据后,作者使用卷积神经网络(CNN)进行训练,对人脸表情进行特征提取,随后进行足够的训练批次。

此时,人脸情绪可以识别,随后就是配文字了···

表情包配文字

以文配图,以图配文,最重要的是匹配。

在这款Meme生成器中,作者使用chef软件作为配置管理工具。

用户上传图片,机器工作流程如下:

判别是否是人脸,如果是,进入第二步;
判别情绪,是高兴还是悲伤,得到评估结果(metric);
依照情绪判定,生成相应文字。

简单来说,用户上传一张图片,机器调用预先训练的模型去对图片进行二分类,得到一个有偏向概率值,得到图片情绪。

作者使用TensorFlow预训练一个文字对齐(text alignment)模型,判定情绪后,在既有存储文字的数据集中,进行相关图片的文字匹配度,最终组合文字和图片。

生成一张表情包就这么简单~

是不是真的有这么强大,网址在下面👇。

试试便知~

参考链接:
https://medium.com/towards-artificial-intelligence/meme-generator-memegen-using-deep-learning-d133e6fc363f
http://34.74.55.103
https://github.com/developers-cosmos/Meme-Generator

本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

榜单征集!7大奖项锁定AI TOP企业

「2020中国人工智能年度评选」正式启幕!将从公司、人物、产品、社区四大维度共7个奖项寻找优秀的AI企业,欢迎大家扫码报名参与。 
榜单将于12月揭晓,也期待与百万从业者们,共同见证这些优秀企业的荣誉!


量子位 QbitAI · 头条号签约作者


վ'ᴗ' ի 追踪AI技术和产品新动态


一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~


登录查看更多
0

相关内容

生成器是一次生成一个值的特殊类型函数。可以将其视为可恢复函数。调用该函数将返回一个可用于生成连续 x 值的生成【Generator】,简单的说就是在函数的执行过程中,yield语句会把你需要的值返回给调用生成器的地方,然后退出函数,下一次调用生成器函数的时候又从上次中断的地方开始执行,而生成器内的所有变量参数都会被保存下来供下一次使用。
专知会员服务
183+阅读 · 2020年11月23日
专知会员服务
146+阅读 · 2020年9月6日
【2020新书】实战R语言4,323页pdf
专知会员服务
102+阅读 · 2020年7月1日
一份简明有趣的Python学习教程,42页pdf
专知会员服务
77+阅读 · 2020年6月22日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
 图像内容自动描述技术综述
专知会员服务
87+阅读 · 2019年11月17日
Github项目推荐 | Emotion-recognition 实时表情识别
AI科技评论
18+阅读 · 2019年7月8日
语音情绪识别|声源增强|基频可视化
深度学习每日摘要
15+阅读 · 2019年5月5日
人脸表情分类与识别:人脸检测+情绪分类
北京思腾合力科技有限公司
27+阅读 · 2017年12月18日
keras实战︱人脸表情分类与识别:人脸检测+情绪分类
数据挖掘入门与实战
21+阅读 · 2017年12月16日
使用深度学习方法实现面部表情包识别
高可用架构
4+阅读 · 2017年7月14日
Arxiv
0+阅读 · 2020年12月3日
Arxiv
4+阅读 · 2018年9月25日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
11+阅读 · 2018年3月23日
Arxiv
3+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
183+阅读 · 2020年11月23日
专知会员服务
146+阅读 · 2020年9月6日
【2020新书】实战R语言4,323页pdf
专知会员服务
102+阅读 · 2020年7月1日
一份简明有趣的Python学习教程,42页pdf
专知会员服务
77+阅读 · 2020年6月22日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
 图像内容自动描述技术综述
专知会员服务
87+阅读 · 2019年11月17日
相关资讯
Top
微信扫码咨询专知VIP会员