还在为改论文头秃?新AI帮你搞定它,加注释查错增删细节样样在行,Meta AI团队出品

2022 年 8 月 28 日 量子位
萧箫 发自 凹非寺
量子位 | 公众号 QbitAI

改论文,有时候比写论文痛苦。

无论是导师“刷屏”的一个个建议,还是期刊给回来的审稿意见,都能折磨得人头发狂掉。

好消息是,现在AI终于可以帮你改论文了。

像是给论文引用的某个算法/观点加上原始参考文献

又或是修改文中的一些事实性错误:

都只需要描述一句话(直接粘贴导师的修改意见),AI就能准确领会你的意图,并上手改动论文。

最关键的是,改动的地方AI还会给出解释,让你流利应对导师的“突击检查”:

这是Meta AI搞出来的最新协同语言模型PEER,要解决的就是AI会生成文章、却不会改文章的问题。

人均扑克高手(doge)

看到这里,一名在读博士生狂喜:“没写完的博士论文有着落了!”

还有网友表示:

很棒的工作,如果LLM没有交互性,那终将成为一个死胡同。《银河系漫游指南》的作者一定会喜欢它的。

那么,这只AI究竟是怎么学会“改文章”的?

用AI帮AI一步步“捋顺思路”

此前AI会写却不会改论文,主要有三点原因

①无法控制文章细节,搞不懂自己要改啥;②无法听懂人类的命令;③解释不了自己生成了什么。

为此,Meta AI的研究人员用4个编解码器组成PEER,每个编解码器干不同的活。

它们被分别命名为PEER-Edit(整体规划&编辑)、PEER-Undo(还原编辑步骤)、PEER-Explain(解释编辑目的)、PEER-Document(搜集素材)

这几个编解码器并非独立工作,它们的作用是相辅相成的。

例如,PEER-Undo的出现,实际上就是为了加强PEER-Edit的编辑能力。

PEER-Edit是4个编解码器中的核心骨干,它会在输入一段待修改文本和参考素材后,决定如何对文本进行编辑,并给出编辑结果。

但如果直接用待修改文本和参考素材训练PEER-Edit,会发现它的编辑能力不稳定。

因此,需要用PEER-Undo来根据PEER-Edit的输出和素材,尽可能还原PEER-Edit编辑过的每个步骤,有点像是“帮对方捋顺编辑思路”。

这样一来,PEER-Edit就会意识到“原来我打算这样编辑”,并借助PEER-Undo生成的结果,有意识加强训练效果。

在PEER-Edit和PEER-Undo之外,PEER-Explain和PEER-Document的作用就相对好理解了。

其中,PEER-Explain负责将最终编辑的结果“变成人话”;PEER-Document则负责到网上收集修改用的素材(包括但不限于维基百科),给PEER-Edit“打零工”。

4个编解码器加在一起,就组成了一个既能与人沟通、了解修改意图,也能上手查找资料、编辑论文的协同语言模型PEER。

团队将它与其他模型的能力进行了比较。

110亿参数实现SOTA

具体来说,比较的模型包括一些基于T5(Text-to-Text Transfer Transformer)的模型和一些1750亿参数的解码器模型(GPT-3)等。

从图中可见,PEER系列的模型参数最高也就110亿左右,但在一些相关评估上都刷新了SOTA。

从可以实现的效果来看,基本上能直接通过交互,让AI写出一段论文并修改:

例如“删掉没信源的表述”、以及“把步骤列出来”,这只AI都能准确理解并实现:

不过对于这个模型,也有网友提出了一个设想:

如果让PEER去审查PEER自己的文章,会怎样呢?(手动狗头)

论文地址:
https://arxiv.org/abs/2208.11663

参考链接:
https://twitter.com/timo_schick/status/1562818684049309698

「人工智能」、「智能汽车」微信社群邀你加入!

欢迎关注人工智能、智能汽车的小伙伴们加入我们,与AI从业者交流、切磋,不错过最新行业发展&技术进展。

PS. 加好友请务必备注您的姓名-公司-职位哦 ~


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~



登录查看更多
0

相关内容

【ACM MM2020】对偶注意力GAN语义图像合成
专知会员服务
35+阅读 · 2020年9月2日
还在修改博士论文?这份《博士论文写作技巧》为你指南
【CVPR2020-Facebook AI】前置不变表示的自监督学习
专知会员服务
46+阅读 · 2020年4月19日
GPT-3写了一篇论文
夕小瑶的卖萌屋
1+阅读 · 2022年7月6日
震惊四座! 哄一哄能让GPT-3准确率暴涨61%!
THU数据派
0+阅读 · 2022年5月26日
看不懂代码?AI给你做翻译,说人话的那种
量子位
0+阅读 · 2022年1月30日
写Rap,编菜谱,你画我猜……这些 AI demo 我可以玩一天!
夕小瑶的卖萌屋
0+阅读 · 2021年11月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员