【导读】SIGIR 2019正在法国巴黎如火如荼的召开。小编收集到了SIGIR2019的可解释性体检和搜索教程。可解释的推荐和搜索尝试开发搜索/推荐模型,来保证高质量的推荐或搜索结果,以及可以生成结果的直观解释。这有助于提高系统的透明性、说服力、可信度和有效性。本教程主要介绍可解释推荐和搜索算法的最新研究,以及它们在搜索引擎、电子商务和社交网络等实际系统中的应用。本教程旨在向社区介绍和交流可解释的推荐和搜索方法,并聚集对该研究方向感兴趣的研究人员和实践者进行讨论、思想交流和研究推广。
作者主页:http://yongfeng.me/
原文链接:http://yongfeng.me/attach/ears-tutorial.pdf
【作者简介】
Yongfeng Zhang
Position: Assistant Professor, Department of Computer Science, Rutgers University – New Brunswick
Research Interests: Information Retrieval and Recommender Systems, Machine Learning and Data Mining, Economics of Data Science
教育背景和经历:
2018 – now, Assistant Professor, Department of Computer Science, Rutgers, The State University of New Jersey
2016 – 2017, Postdoc at CICS, UMass Amherst (Supervisor Prof. W. Bruce Croft); Faculty member at CS Dept, UMass Lowell
2015 – 2016, Assistant Specialist (Supervisors Prof. Yi Zhang and Daniel Friedman), School of Enginnering, University of California Santa Cruz
2014 – 2015, Research Assistant (Supervisors Prof. Tat-Seng Chua and Min-Yen Kan), School of Computing, National University of Singapore
2011 – 2016, Ph.D. in CS (Supervisors Prof. Shaoping Ma, Min Zhang, Yiqun Liu), Department of Computer Science, Tsinghua University
2014 – 2016, B.S. in Economics, National School of Development, Peking University
2007 – 2011, B.E. in Computer Science, Department of Computer Science and Technology, Tsinghua University
【部分PPT】
请关注专知公众号(点击上方蓝色专知关注)
后台回复“EARS” 就可以获取最新PPT教程的下载链接~
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!550+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程