【PNAS】深度神经网络中的理论议题,麻省理工Tomaso Poggio撰写

2021 年 1 月 23 日 专知


虽然深度学习在许多应用中都取得了成功,但它在理论上还没有得到很好的理解。尽管存在过度参数化和缺乏显式正则化,但深度学习的理论表征应该回答有关其近似能力、优化动力学和强泛化性能的问题。为了实现这一目标,我们回顾了最近的成果。在近似理论中,浅层网络和深层网络都可以以指数代价逼近任意连续函数。但是,我们证明了对于某些类型的合成函数,卷积型深度网络(即使没有权值共享)可以避免维数诅咒。在描述最小化经验指数损失时,我们考虑权值方向的梯度流动,而不是权值本身,因为相关的分类函数对应于归一化网络。归一化权值的动力学结果等价于在单位范数约束下最小化损失的约束问题。特别地,典型梯度下降动力学与约束问题具有相同的临界点。因此,在梯度流中,在指数型损失函数下训练深度网络存在隐式正则化。因此,临界点对应于损失的最小常模infima。这个结果特别相关,因为它最近表明,对于过度参数化的模型,选择最小范数解决方案优化了交叉验证留下一的稳定性,从而优化了预期误差。因此,我们的结果表明梯度下降深度网络的期望误差最小。


https://www.pnas.org/content/117/48/30039


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DNNT” 可以获取【PNAS】深度神经网络中的理论议题,麻省理工Tomaso Poggio撰写专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

Tomaso A. Poggio是麻省理工学院大脑与认知科学系的Eugene McDermott教授,也是麻省理工学院新成立的NSF大脑、心智和机器中心的主任,麻省理工学院和哈佛大学是该中心的主要成员机构。他是计算机科学和人工智能实验室以及麦戈文大脑研究所的成员。他是神经科学研究项目的荣誉成员,美国艺术与科学学院的成员,AAAI的创始成员和麦戈文大脑研究所的创始成员。他获得了2003年的Gabor奖、2009年的Okawa奖、美国科学促进会奖学金,以及2014年的斯沃茨理论与计算神经科学奖。他是被引用最多的计算机科学家之一,其贡献从视觉系统的生物物理和行为研究到人类和机器的视觉和学习的计算机分析。利用W. Reichardt,他定量地描述了苍蝇的视觉运动控制系统。引入了计算神经科学中分析层次的重要思想。他引入正则化作为数学框架来解决视觉不适定问题和从数据中学习的关键问题。他的研究一直是跨学科的,介于大脑和计算机之间。它现在专注于学习理论的数学,学习技术在计算机视觉中的应用,特别是视觉皮层的计算神经科学。个人主页:http://poggio-lab.mit.edu/people/tomaso-poggio
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
麻省理工学院MIT-ICLR2020《神经网络能推断出什么?》
专知会员服务
50+阅读 · 2020年2月19日
基于深度学习的多标签生成研究进展
专知
4+阅读 · 2020年4月25日
深度强化学习简介
专知
30+阅读 · 2018年12月3日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
3+阅读 · 2018年11月13日
VIP会员
Top
微信扫码咨询专知VIP会员