大数据挖掘DT数据分析 公众号: datadw
ROC全称是“受试者工作特征”(Receiver Operating Characteristic)。ROC曲线的面积就是AUC(Area Under the Curve)。AUC用于衡量“二分类问题”机器学习算法性能(泛化能力)。
Python中sklearn直接提供了用于计算ROC的函数[1],下面就把函数背后的计算过程详细讲一下。
首先,解释几个二分类问题中常用的概念:
True Positive
, False Positive
, True Negative
, False Negative
。
它们是根据真实类别与预测类别的组合来区分的。
假设有一批test样本,这些样本只有两种类别:正例和反例。机器学习算法预测类别如下图(左半部分预测类别为正例,右半部分预测类别为反例),而样本中真实的正例类别在上半部分,下半部分为真实的反例。
预测值为正例,记为P(Positive)
预测值为反例,记为N(Negative)
预测值与真实值相同,记为T(True)
预测值与真实值相反,记为F(False)
TP
:预测类别是P(正例),真实类别也是P
FP
:预测类别是P,真实类别是N(反例)
TN
:预测类别是N,真实类别也是N
FN
:预测类别是N,真实类别是P
样本中的真实正例类别总数即TP+FN。TPR
即True Positive Rate,TPR = TP/(TP+FN)。
同理,样本中的真实反例类别总数为FP+TN。FPR
即False Positive Rate,FPR=FP/(TN+FP)。
还有一个概念叫”截断点”。机器学习算法对test样本进行预测后,可以输出各test样本对某个类别的相似度概率。比如t1是P类别的概率为0.3,一般我们认为概率低于0.5,t1就属于类别N。这里的0.5,就是”截断点”。
总结一下,对于计算ROC,最重要的三个概念就是TPR
, FPR
, 截断点
。
截断点
取不同的值,TPR
和FPR
的计算结果也不同。将截断点
不同取值下对应的TPR
和FPR
结果画于二维坐标系中得到的曲线,就是ROC曲线。横轴用FPR表示。
sklearn给出了一个计算ROC的例子[1]。
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
通过计算,得到的结果(TPR
, FPR
, 截断点
)为
fpr = array([ 0. , 0.5, 0.5, 1. ])
tpr = array([ 0.5, 0.5, 1. , 1. ])
thresholds = array([ 0.8 , 0.4 , 0.35, 0.1 ])#截断点
将结果中的FPR与TPR画到二维坐标中,得到的ROC曲线如下(蓝色线条表示),ROC曲线的面积用AUC表示(淡黄色阴影部分)。
上例给出的数据如下
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
用这个数据,计算TPR,FPR的过程是怎么样的呢?
y是一个一维数组(样本的真实分类)。数组值表示类别(一共有两类,1和2)。我们假设y中的1表示反例,2表示正例。即将y重写为:
y_true = [0, 0, 1, 1]
score即各个样本属于正例的概率。
样本 | 预测属于P的概率(score) | 真实类别 |
---|---|---|
y[0] | 0.1 | N |
y[2] | 0.35 | P |
y[1] | 0.4 | N |
y[3] | 0.8 | P |
截断点
依次取为score值将截断点
依次取值为0.1,0.35,0.4,0.8时,计算TPR
和FPR
的结果。
截断点
为0.1说明只要score>=0.1,它的预测类别就是正例。
此时,因为4个样本的score都大于等于0.1,所以,所有样本的预测类别都为P。
scores = [0.1, 0.4, 0.35, 0.8]
y_true = [0, 0, 1, 1]
y_pred = [1, 1, 1, 1]
TPR = TP/(TP+FN) = 1
FPR = FP/(TN+FP) = 1
截断点
为0.35说明只要score>=0.35,它的预测类别就是P。
此时,因为4个样本的score有3个大于等于0.35。所以,所有样本的预测类有3个为P(2个预测正确,1一个预测错误);1个样本被预测为N(预测正确)。
scores = [0.1, 0.4, 0.35, 0.8]
y_true = [0, 0, 1, 1]
y_pred = [0, 1, 1, 1]
TPR = TP/(TP+FN) = 1
FPR = FP/(TN+FP) = 0.5
截断点
为0.4说明只要score>=0.4,它的预测类别就是P。
此时,因为4个样本的score有2个大于等于0.4。所以,所有样本的预测类有2个为P(1个预测正确,1一个预测错误);2个样本被预测为N(1个预测正确,1一个预测错误)。
scores = [0.1, 0.4, 0.35, 0.8]
y_true = [0, 0, 1, 1]
y_pred = [0, 1, 0, 1]
TPR = TP/(TP+FN) = 0.5
FPR = FP/(TN+FP) = 0.5
截断点
为0.8说明只要score>=0.8,它的预测类别就是P。所以,所有样本的预测类有1个为P(1个预测正确);3个样本被预测为N(2个预测正确,1一个预测错误)。
scores = [0.1, 0.4, 0.35, 0.8]
y_true = [0, 0, 1, 1]
y_pred = [0, 0, 0, 1]
TPR = TP/(TP+FN) = 0.5
FPR = FP/(TN+FP) = 0
用下面描述表示TPR和FPR的计算过程,更容易记住
TPR:真实的正例中,被预测正确的比例
FPR:真实的反例中,被预测正确的比例
最理想的分类器,就是对样本分类完全正确,即FP=0,FN=0。所以理想分类器TPR=1,FPR=0。
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
ROC计算公式,http://blog.yhat.com/posts/roc-curves.html
《机器学习》,周志华
人工智能大数据与深度学习
搜索添加微信公众号:weic2c
长按图片,识别二维码,点关注
大数据挖掘DT数据分析
搜索添加微信公众号:datadw
教你机器学习,教你数据挖掘
长按图片,识别二维码,点关注