![]()
![]()
「PW Live」是 PaperWeekly 的学术直播间,旨在帮助更多的青年学者宣传其最新科研成果。我们一直认为,单向地输出知识并不是一个最好的方式,而有效地反馈和交流可能会让知识的传播更加有意义,从而产生更大的价值。
本期 PW Live,我们邀请到旷视研究院基础模型组实习生王毅,为大家带来用于条件图像生成的注意力归一化的主题分享。
对本期主题感兴趣的小伙伴,5 月 19 日(周二)晚 7 点,我们准时相约 PaperWeekly B 站直播间。
传统的基于卷积的生成对抗网络通过层次性的局部操作来合成图像,即其中的长程依赖关系是用马尔可夫链建模的。我们认为这种建模方式不足以用于生成具有复杂结构的图像类别。
在本文中,我们对基于实例归一化的进行扩展,用注意力归一化(attentive normalization)来描述长程依赖。具体而言,我们根据输入特征图的内部语义相似度将其软划分为几个区域,并分别对不同区域进行归一化。该操作增强了具有语义对应关系的遥远区域之间的一致性。
与自注意力对抗生成网络(self-attention GAN)相比,我们的注意力归一化不需要测量所有位置的相关性,因此可以直接应用于大尺度特征图而无需太多计算负担。我们在根据语义标签的条件图像生成(class-conditional image generation)和语义修复(semantic inpainting)的实验证明了我们提出的模块在客观和视觉评估方面的有效性。
基于对抗网络的条件图像生成简介和自注意力方法
注意力归一化方法介绍
该方法的实验结果
王毅,旷视研究院基础模型组实习生,香港中文大学计算机科学与工程系博士在读。
研究方向为计算机视觉和机器学习,主要包括图像生成,计算摄影学,在 CVPR,NIPS 等会议发表多篇论文。
本次直播将在 PaperWeekly B 站直播间进行,扫描下方海报二维码或点击阅读原文即可免费观看。线上分享结束后,嘉宾还将在直播交流群内实时 QA,在 PaperWeekly 微信公众号后台回复「PW Live」,即可获取入群通道。
B 站直播间:
https://live.bilibili.com/14884511
![]()
![]()
![]()
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
关于PaperWeekly
PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。
![]()
![]()