转载自:集智俱乐部(ID:swarma_org)
作者:十三维
为什么有些绘画作品结构不那么复杂,却给人身临其境的美感?什么样的信息组合方式会让人觉得美?我们是否有可能度量艺术作品的美?在近期的一篇 arxiv 文章中,作者从熵复杂度的三种度量出发,重新审视了图像欣赏与其统计属性之间的关系。通过生成符合标准的两组不同随机图像集,对不同人群进行了一项大规模偏好调查,最终揭示出具有中等熵复杂度的图像具有最大欣赏价值;并指出在对图像进行粗粒化处理后,从高频噪声中提取的结构复杂度大小,可以作为预测人们审美偏好的良好指标。
存在普遍的美吗?
图 1:达芬奇的维特鲁威人
因此,历史上关于“什么是艺术或美”,必须要有科学标准的信念,其实已经存在了相当一段时间。尽管这种普遍美的观念在艺术史上断断续续被忽略和争论着,甚至如今被很多后现代思想家强烈反对着。
信息熵的三种复杂度
论文题目:
Beauty and structural complexity
论文地址:
https://arxiv.org/abs/1910.06088
第二种是计算图像的分形维度 df(fractal dimension),论文使用闵可夫斯基计盒维数法(Minkowski-Bouligand box-counting)进行计算。将图像放在一个均匀分割的网格上,数一数最小需要几个格子来覆盖这个图形的边长。通过对网格的逐步细化(取无穷小),计算覆盖盒子数目对数与整个图形格子数比值的极限。
图 3:(英国海岸线的盒维度估计,约为 1.26)
第三种为图像的压缩率或算法复杂度τ(algorithmic complexity),通过计算压缩图像对未压缩图像大小之比获得。这种方法的思路是:如果一幅图片表达的信息很少,那么它就可以被压缩算法压缩的很小,因此压缩前后图片的比值就可以代表一幅图片的复杂程度。
概念:什么是复杂性?
统计特性与图像欣赏
图 5:分别使用傅里叶幅值逆变换和计盒维数法生成的两组图像
表 1
那么,生成的图像的统计特性和人们欣赏它们的倾向之间有联系吗?为此研究者们对不同参与者进行了三项略有不同实验调查。
第一次调查参与者来自CFM 理工学院和巴黎理工学院的同事以及学生,总共约有350人参加,均无私自愿参与,没有任何经济激励。研究者使用了 Zooniverse platform 平台。在一个直观的界面上,要求受试者对随机生成具有不同复杂度的图像喜好程度进行打分。为了方便排名,分值经过类似归一化处理,统一在[0,1]区间,结果在图6a 中用实心黑线展示。
研究者们发现,参与者首选的图像分别为a4、a5与b4、b5,它们均对应于接近1的斜率α。而α≈1 斜率正是自然图像和视觉艺术的所对应的光谱特性。与参与者的讨论也表明,他们认为自己喜欢的图像最和谐、最均衡。
图 6:受试者对随机生成具有不同复杂度的图像喜好程度进行打分。为了方便排名,分值经过类似归一化处理,统一在[0,1]区间,结果在图6a 中用实心黑线展示。在图6b 中第一次结果用灰色表示,第二次实心黑线。
为了增加研究的规模和参与者的多样性,另外两项调查在 Mechanical Turk 平台上进行,有一定报偿支出。第一次结果在图6b 中用灰色表示,第二次实心黑线。第一次略微嘈杂的结果,研究者认为是部分受试者为报偿不认真的缘故。在第二次对回报进行限定后(若故意偏离将不获得报偿),其结果表明噪音显著减少,与最初的无私调查组具有更好的一致性。
两项调查均得出结论,图像的统计特性,即中等熵复杂度与人们之间的欣赏偏好是彼此一致的。
从熵复杂度到结构复杂度
在为两组图像计算结构复杂度,并在图2上绘制为深红色菱形后,如预期的那样,结构复杂度τcg 是非单调函数,在中间取得最大值。
因此,研究者的理论和实验之间拟合获得了更大的一致性:不仅最大值重合,曲线的整体形状也相似。从而支持研究者做出结论,即在粗粒化(去噪)之后的结构复杂性是人们对平均图像偏好的更好的代表指标。并且,这个指标不仅更符合人脑的格式塔知觉过程,与自然图像相匹配的偏好也达到了峰值。从演化心理学看,这印证了人们的审美偏好受到其自然环境的影响。
如何欣赏印象派作品
印象派的诞生,一方面不满于古典学院美术通过客观知识对世界的机械建构,一方面又为了规避照相机发明对外部现实像素般精准的描摹。在印象派画家看来,真实的世界是活生生的,它不可能出自黑暗中的画室、用抽象的几何和宏大的想象创造出来,也不可能存于镜头下的冰冷、如谎言般片面地截取世界的一隅,把无生命的切片当成真实本身。
也就是说,真实的世界,不是静态的。人的眼睛不是镜头,人的大脑也不是机器。
因此,他们走出狭小的画室,到大自然和人群中去,用模糊的光斑和成块的色彩,在绘画中捕捉时间的脚步,在光影变化中注入情感,最终在朦胧中定格自己那一瞬间所感知到在呼吸的永恒。
如果不理解印象派画家的理念和追求,那么看他们作品往往就是一团团模糊的色块,充满潦草和混乱的笔触,粗糙得好像未完成的草稿。甚至越仔细看,越是一头雾水。但有经验的艺术家和艺术爱好者们,往往会知道看印象派作品的几个窍门:
1、眯着眼看
2、退后几步看
3、闭上眼几分钟突然睁开眼看
这是什么道理?其实就是因为印象派画家们并非在画一个物体形象,而是试图再现真实的视觉过程。
在前面的图像复杂度分析中,我们已经知道,对于有太多噪音的画面,人脑会先有一个去噪的过程,这个过程就相当于对画面进行粗粒化处理(数字图像则是压缩),因此人脑所见的画面是对原始信息熵复杂度转换后画面。这个画面的结构复杂度才是人脑进行审美感知的指标。
那么,从这个角度看,印象派画家,就相当于悬置了大脑基于客观知识对世界的认知,抛弃了绘画最初对精确性形象的追求,只画自己目之所见,因此相当于自己预先就对进画面进行了粗粒化处理——按照格式塔心理学美学家鲁道夫·阿恩海姆(Rudolf Arnheim)的观点,当你眯着眼睛、或退后一段距离后,这样才能看清由光斑和色彩之间并置形成的一个良好的“格式塔构图”。印象派之父莫奈自己也说:
我真希望自己一生下来是一个双目失明的人,然后突然获得视觉,抓起画笔,再把所看到的一切全都画下来。
所以我们能理解,印象派其实在追求更加真实的真实。通过神经科学对视觉研究我们知道,人脑最初看到的并非是一幅完成的图像,各种形象、物体了然分明,如照片般丝毫毕现。而是经历了一系列渐变处理:从对原始信号的初期处理(V1)、到图形背景分离(V2)[8]、到方位动态(V3)、到颜色(V4)、到运动(V5)……最终加上各种知识滤镜创造出呈现的整体知觉。(这些不同处理分布所在的视觉皮层,并非仅完成单一功能,而是很多同时在处理形状、颜色、方位、运动等,但随着层次会有不同加工深度)
印象派家所画的,就是在大脑视觉皮层结合经验知识构图之前,瞬间展现光影的目之所见——因此,在你以适当的距离和方式观看印象派作品时,会随着不同的凝视范围和角度,从画中看到身临其境般的光影动态效果。
不需要讲究透视、不需要讲究构图、不需要追求立体、不追求我知道“应该什么样子”的客观,只是用非常直接的颜色,画自己眼前所见的,这些跳跃的彩色光线的瞬间,就展现了更鲜活的真实。
当然,如果再向前进一步,我们会看到抽象艺术家们的创作了——那或许是更深一层的真实。
图 12:左边是猫头鹰的视觉视野,右边是康定斯基的抽象艺术作品(康定斯基经常借用通灵等神秘体验获得灵感作画)
最终我们得以知晓,为什么自然界中熵复杂度最高的图像,在我们看来并没有美感了。人类的大脑的知觉系统,随着上百万年演化,已经去除了无意义的噪音,筛选和过滤出了对人类最有利生存的信息——它可以被结构复杂度这种认知复杂度所度量。人们所感知的所看到的世界,也本身就是大脑进行艺术创造的结果。艺术家们,在突破自身的藩篱后,所画出看似不真实的画面,却是捕捉到了更深层次的真实。
既然艺术本身就在创造真实,那么存在普遍的美,它可以被某种秩序度量着,这是理所当然了。
[1] Reber R1, Processing Fluency and Aesthetic Pleasure,
doi.org/10.1207/s15327957pspr0804_3
[2] George David Birkhoff,Aesthetic Measure
[3] G. J. Stephens, T. Mora, G. Tkacik, and W. Bialek, Physical review letters 110, 018701 (2013).
[4] Horgan J. 复杂性研究的发展趋势—从复杂性到困惑[J]. 科学美国人, 1995 , 10 : 42-47
[5] 苗东升,系统科学精要,215-216
[6] A.Desolneux, L.Moisan, and J.-M.Morel, From Gestalt Theory to Image Analysis (Springer New York, 2008).
[7] S. Aaronson, S. M. Carroll, and L. Ouellette, “Quantify- ing the rise and fall of complexity in closed systems: The coffee automaton,” (2014), arXiv:1405.6903
[8] Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules
[9] B.Spehar and R.P.Taylor, in Human vision and electronic imaging XVIII, Vol. 8651 (2013) p. 865118.
——END——