数据异构的武器 —— BINGLOG+MQ

2017 年 9 月 9 日 开源中国 新栋BOOK


摘要: 分库分表中有一个最为常见的场景,为了提升数据库的查询能力,我们都会对数据库做分库分表操作。比如订单库,开始的时候我们是按照订单ID维度去分库分表,那么后来的业务需求想按照商家维度去查询,比如我想查询某一个商家下的所有订单,就非常麻烦。这个时候通过数据异构就能很好的解决此问题。


1、定义


何谓数据异构,上周交易部门商品的同事过来做分享,又看到这个词,他的PPT里面是 数据库异构。其实我们以前做的事情,也是可以成为数据异构。比如我们将DB里面的数据持久化到REDIS里面去,就是一种数据异构的方式。如果要下个定义的话:把数据按需(数据结构、存取方式、存取形式)异地构建存储。


2、常见应用场景


分库分表中有一个最为常见的场景,为了提升数据库的查询能力,我们都会对数据库做分库分表操作。比如订单库,开始的时候我们是按照订单ID维度去分库分表,那么后来的业务需求想按照商家维度去查询,比如我想查询某一个商家下的所有订单,就非常麻烦。这个时候通过数据异构就能很好的解决此问题,比如下图

异构维度.png

总结起来大概有以下几种场景

  1. 数据库镜像

  2. 数据库实时备份

  3. 多级索引

  4. search build(比如分库分表后的多维度数据查询)

  5. 业务cache刷新

  6. 价格、库存变化等重要业务消息


3、数据异构方向


异构的几种方向.png 

在日常业务开发中大致可以分为以上几种数据去向,DB-DB这种方式,一般常见于分库分表后,聚合查询的时候,比如我们按照订单ID去分库分表,那么这个时候我们要按照用户ID去查询,查询这个用户下面的订单就非常不方便了,当然可以使用统一加到内存中去,但这样不太好。所以我们就可以用数据库异构的方式,重新按照用户ID的维度来分一个表,像在上面常见应用场景中介绍的那样。把数据异构到redis、elasticserach、slor中去要解决的问题跟按照多维度来查询的需求差不多。这些存储天生都有聚合的功能。当然同时也可以提高查询性能,应对大访问量,比如redis这种抗量银弹。


4、数据异构的常用方法


4.1、完整克隆

这个很简单就是将数据库A,全部拷贝一份到数据库B,这样的使用场景是离线统计跑任务脚本的时候可以。缺点也很突出,不适用于持续增长的数据。

4.2、标记同步

这个是业务场景比较简单的时候,理想情况下数据不会发生改变,比如日志数据,这个时候可以去标记,比如时间戳,这样当发生故障的时候还可以回溯到上一次同步点,开始重新同步数据。

4.3、BINLOG方式

通过实时的订阅mysql的binglog日志,消费到这些日志后,重新构建数据结构插入一个新的数据库或者是其他存储比如es、slor等等。订阅binglog日志可以比较好的能保证数据的一致性。

4.4、MQ方式

业务数据写入DB的同时,也发送MQ一份,也就是业务里面实现双写。这种方式比较简单,但也很难保证数据一致性,对简单的业务场景可以采用这种方式。


5、binlog和mq方式重点介绍


5.1、binglog

5.1.1、订阅binglog日志异构流程图

canal异构方式.png

5.1.2、使用说明

binglog是数据的日志记录方式,每次对数据的操作都会有binglog日志。现在开源的订阅binlog日志的组件,比如使用比较广泛的canal,它是阿里开源的基于mysql数据库binlog的增量订阅和消费组件。由于cannal服务器目前读取的binlog事件只保存在内存中,并且只有一个canal客户端可以进行消费。所以如果需要多个消费客户端,可以引入activemq或者kafka。如上图绿色虚线框部分。我们还需要确保全量对比来保证数据的一致性(canal+mq的重试机制基本可以保证写入异构库之后的数据一致性),这个时候可以有一个全量同步WORKER程序来保证,如上图深绿色部分。

5.1.3、canal的工作原理:

先来看下mysql主备(主从)复制原理如下图,在此原理基础之上我们再来理解canal的实现原理就一眼能明白了。

mysql主备复制实现原理.jpg

mysql主备(主从)复制原理,从上层来看,复制分成三步:

  1. master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events,可以通过show binlog events进行查看);

  2. slave将master的binary log events拷贝到它的中继日志(relay log);

  3. slave重做中继日志中的事件,将改变反映它自己的数据。
    再来看下canal的原理,如下图:

    canal工作原理.jpg

  4. cannal实现原理相对比较简单(参照上面的mysql主备复制实现原理):

  5. canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议

  6. mysql master收到dump请求,开始推送binary log给slave(也就是canal)

  7. canal解析binary log对象(原始为byte流)
    我们在部署canal server的时候要部署多台,来保证高可用。但是canal的原理,是只有一台服务器在跑处理,其它的服务器作为热备。canal server的高可用是通过zookeeper来维护的。
    有关canal更具体的使用和详细原理请参照:
    https://github.com/alibaba/canal

5.1.4、注意点

  • 1、确认MySQL开启binlog,使用show variables like 'log_bin'; 查看ON为已开启

  • 2、确认目标库可以产生binlog,show master status 注意Binlog_Do_DB,Binlog_Ignore_DB参数

  • 3、确认binlog格式为ROW,使用show variables like 'binlog_format'; 非ROW模式登录MySQL执行 set global binlog_format=ROW; flush logs; 或者通过更改MySQL配置文件并重启MySQL生效。

  • 4、为保证binlake服务可以获取Binlog,需添加授权,执行 GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON . TO 'admin'@'%' identified by 'admin'; FLUSH PRIVILEGES;

5.2、mq方式

MQ异构方式.png

mq的方式,就相对简单,实际上是在业务逻辑中写DB的同时去写一次MQ,但是这种方式不能够保证数据一致性,就是不能保证跨资源的事务。注:调用第三方远程RPC的操作一定不要放到事务中。


6、总结


本文主要叙述了数据异构的使用场景,方法。这里面涉及到的activemq以及canal并没有深入分析,关于这块的内容可以直接参考相关具体文档,文中已给了链接地址。根据数据异构的定义,将数据异地构建存储,我们可以应用的地方就非常多,文中说的分库分表之后按照其它维度来查询的时候,我们想脱离DB直接用缓存比如redis来抗量的时候。数据异构这种方式都能够很好的帮助我们来解决诸如此类的问题。
转载请注明出处,并附上链接 https://my.oschina.net/wangxindong/blog/1531596
参考资料:
https://github.com/alibaba/canal



推荐阅读

实用即王道,超好用的 Linux 文件管理器推荐

Web 开发者需要知道的 12 个终端命令

国产开源项目又被抄袭?主角还是 00 后创业者

不仅仅是面试,JavaScript 开发者都应该知道的十个概念

点击“阅读原文”查看更多精彩内容

登录查看更多
3

相关内容

数据库( Database )或数据库管理系统( Database management systems )是按照数据结构来组织、存储和管理数据的仓库。目前数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。
【人大】大规模知识图谱补全技术的研究进展
专知会员服务
86+阅读 · 2020年5月2日
轻量级神经网络架构综述
专知会员服务
96+阅读 · 2020年4月29日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
【新加坡国立大学】深度学习时代数据库:挑战与机会
专知会员服务
33+阅读 · 2020年3月6日
知识图谱融合方法,140页ppt,南京大学胡伟老师
专知会员服务
142+阅读 · 2020年2月19日
【阿里技术论文】AliMe KBQA:阿里小蜜中的结构化知识问答
专知会员服务
82+阅读 · 2019年12月14日
【阿里技术干货】知识结构化在阿里小蜜中的应用
专知会员服务
97+阅读 · 2019年12月14日
数据库之架构:主备+分库?主从+读写分离?
架构文摘
8+阅读 · 2019年4月23日
亿级订单数据的访问与储存,怎么实现与优化
ImportNew
11+阅读 · 2019年4月22日
亿级订单数据的访问与存储,怎么实现与优化?
码农翻身
16+阅读 · 2019年4月17日
使用 Canal 实现数据异构
性能与架构
20+阅读 · 2019年3月4日
干货 | 双11总峰值超8亿OPS 阿里分布式NoSQL如何岿然不动稳如山?
阿里巴巴数据库技术
10+阅读 · 2018年12月12日
一篇文章读懂阿里企业级数据库最佳实践
阿里巴巴数据库技术
5+阅读 · 2017年12月20日
【AI说】揭秘京东实时数据仓库背后的神秘力量—JDQ
京东用户画像揭秘:原来买iPhone X的是这么些人
R语言中文社区
10+阅读 · 2017年9月14日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【人大】大规模知识图谱补全技术的研究进展
专知会员服务
86+阅读 · 2020年5月2日
轻量级神经网络架构综述
专知会员服务
96+阅读 · 2020年4月29日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
【新加坡国立大学】深度学习时代数据库:挑战与机会
专知会员服务
33+阅读 · 2020年3月6日
知识图谱融合方法,140页ppt,南京大学胡伟老师
专知会员服务
142+阅读 · 2020年2月19日
【阿里技术论文】AliMe KBQA:阿里小蜜中的结构化知识问答
专知会员服务
82+阅读 · 2019年12月14日
【阿里技术干货】知识结构化在阿里小蜜中的应用
专知会员服务
97+阅读 · 2019年12月14日
相关资讯
数据库之架构:主备+分库?主从+读写分离?
架构文摘
8+阅读 · 2019年4月23日
亿级订单数据的访问与储存,怎么实现与优化
ImportNew
11+阅读 · 2019年4月22日
亿级订单数据的访问与存储,怎么实现与优化?
码农翻身
16+阅读 · 2019年4月17日
使用 Canal 实现数据异构
性能与架构
20+阅读 · 2019年3月4日
干货 | 双11总峰值超8亿OPS 阿里分布式NoSQL如何岿然不动稳如山?
阿里巴巴数据库技术
10+阅读 · 2018年12月12日
一篇文章读懂阿里企业级数据库最佳实践
阿里巴巴数据库技术
5+阅读 · 2017年12月20日
【AI说】揭秘京东实时数据仓库背后的神秘力量—JDQ
京东用户画像揭秘:原来买iPhone X的是这么些人
R语言中文社区
10+阅读 · 2017年9月14日
Top
微信扫码咨询专知VIP会员