推荐来自Yuguang Yang 在美国攻读博士期间上的上课笔记,共有1800页33章数学方法精要笔记,值得关注!
地址:
在信息爆炸的当今,大到企业巨头的经营方向, 小到和日常生活相关的人工驾驶等领域,数学建模和人工智能都对信息数据的收集、处理、解释以及做出决策将起到至关重要的作用。负责开发模型和算法的一线科学家和工程师, 都需要有坚实的数学基础。相信有许多所有对数学建模,机器学习和深度学习深感兴趣的小伙伴,有一定的基础却常常被繁杂的定理和错综的模型所困—— 那么这本书就是一部可供随时查阅,帮助大家融会贯通的宝典。
本书有以下几大亮点:
理论与实践相结合,学以致用。内容详尽,涵盖范围广。
a. 全书干货多覆盖范围广, 包含~100个核心算法, 约300个示意图。例子丰富,且绝大部分定理都有证明。
b. 本书凝聚了作者多年数学建模和机器学习研究和实战经验。根据应用领域, 本书总结并深入讲述传统方法到前沿的深度学习和强化学习算法,帮助读者迅速抓住重点,减少弯路。
便于学习查找,由浅入深,步步为营,多用示意图以助读者理解
a. 本书的算法和定理证明中常常引用相关的其他章节, 循序渐进,有助于读者建立树状知识脉络,一网打尽相关知识点。
b. 本书例子详实并多伴有示意图,清晰易懂。作者基于多年实践,总结并对易混淆的概念进行比对,帮助读者更加扎实掌握相关内容。
https://github.com/yangyutu/EssentialMath
全书GitHub 地址: https://github.com/yangyutu/EssentialMath
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“ML1800” 可以获取《1800页33章数学方法精要笔记 —深入数学建模, 机器学习和深度学习的数学基础》专知下载链接索引