为ML带来拓扑学基础,Nature子刊提出拓扑数据分析方法

2019 年 9 月 3 日 机器之心

机器之心报道

参与:思、一鸣

一位意大利数学家表示,现在我们可以使用一种新数学方法,让机器学习系统能更高效、快速地学习识别复杂图像。该数学家提出的理论已经被 Nature 子刊《Machine Intelligence》接收,该论文的作者表示,这种新方法可以称为「拓扑数据分析(TDA)」。

从数学理论的角度来理解并提升机器学习方法,这也是近来非常有潜力的研究方向。不论是以前通过常微分方程或偏微分方程形式化神经网络,还是这一篇从拓扑学的角度强化神经网络的鲁棒性,也许当更多的数学基础被赋予机器学习时,它的发展与创新就会变得更加有「规律」。


  • 论文地址:https://www.nature.com/articles/s42256-019-0087-3

  • 实现地址:https://zenodo.org/record/3264851#.XW3P7lwzaUk


本文介绍了这种基于拓扑学的数学方法,因为具体的推导与证明非常复杂,我们只简要介绍主体思想与实验,更多详细内容可查阅原论文。


目前的 ML 有什么缺陷


ML 有很多缺陷。首先,机器学习系统的鲁棒性一直备受质疑。例如,在识别目标时,如果目标发生旋转,则 ML 系统不能识别这一目标。此外,研究者提到,即使 ML 系统在性能方面表现良好,人们依然不知道模型内部发生了什么。


这两大问题促使研究者探究——是否可以将知识在训练前输入模型中,使其在一个更为有限的空间内进行搜索,而不是考虑搜索空间中所有的可能,哪怕是那些在现实中从来不可能出现的。


「我们想要控制模型学习到的特征所在空间,」论文一作 Mattia Bergomi 表示,「这有点像平庸和大师级象棋选手的差别,前者看到了所有可能的棋路,但是后者只看到那些好的路子。」


据研究者们介绍,他们的研究只集中解决一个问题:「训练识别路标的深度神经网络时,如何告诉网络只需要关注三角形、环形等简单的几何形状即可。」


可以识别图像旋转的「机器」。


怎样解决?


对此,研究者提出了一种名为拓扑数据分析(Topological Data Analysis: TDA)的方法。TDA 可以被视为是一种搜索拓扑特征这一内部结构的工具,根据拓扑特征,任意复杂的目标都能表示为一大组数字。而种拓扑特征只需要通过特定的「镜头」,或者过滤器,来对数据进行浏览就能得到。


例如,对于人脸数据来说,使用 TDA 可以教会神经网络在没有多种角度的人脸数据的情况下进行人脸识别。


为了测试这种方法,研究人员设置了一个教会神经网络学习识别手写数字的实验。根据手写数字的人的不同,写出的数字可能是两个一样的,或者看起来很不一样但实际上是一个数字的情况。研究者构建了一系列他们认为有意义的先验特征,并要求机器从这些不同的「镜头」中选择,并处理图像。


研究人员从数学角度介绍了这种通用型框架。他们表示,TDA 是一种可以在数据集上进行运算的算子集合。


具体而言,拓扑学数据分析方法用于描述群等不变非扩张算子(group equivariant nonexpansive operators: GENEO)的空间。GENEO 是函数空间和变换之间的映射。研究人员研究了 GENEO 的拓扑和度量性质,用于评价它们的近似率,并设置了用于初始化的泛化策略。在结合了算子后,研究人员最终将它们以树状结构连接,用于组成算子网络。


研究人员发现,用于识别数字 5 和数字 7 的 TDA 增强神经网络所需要的训练数据量和训练时间都相当程度地减少了。


实验结果


在这一部分中,研究者测试了该方法在分类数据集中的效果。首先作者构建了一种算法以允许选择并采样 GENEO,从而通过一种标注函数学习在数据集上归纳的度量。随后作者定义了 GENEO 将要使用的目标类别,它们都是 MNIST、fashion-MNIST 和 CIFAR-10 数据集中的类别。


选择和采样会用于逼近一个智能体,从而允许表达这些数据集潜在的度量标准,这只要观察每类别 20 到 40 个样本就可以完成。最后,研究者可以将选择和采样的 GENEO 注入到神经网络的知识中。


图 2:整个实验的 Pipeline。


图 3:在 MNIST 数据集上选定的 IENEO。通过考虑在 GENEO 空间上定义的度量,我们可以选择能识别 MNIST 数据集的运算子。


图 4:通过 IENEO 选择和采样的度量学习。其中 A 为从 MNIST 数据集中采样的「7」和「5」,B、C、D 表示层级聚类结果。其中层级聚类通过使用不同维度的 IENEO 来度量验证样本属于「7」和「5」的距离。


图 5:IENEO 在 fashion-MNIST 和 CIFAR-10 上的度量学习。

参考链接:
https://cosmosmagazine.com/mathematics/novel-maths-could-bring-ai-to-next-level
https://www.eurekalert.org/pub_releases/2019-09/ccft-nmc082919.php


文为机器之心报道,转载请联系本公众号获得授权
✄------------------------------------------------
加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告 & 商务合作:bd@jiqizhixin.com
登录查看更多
1

相关内容

【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
117+阅读 · 2020年5月28日
【经典书】Python数据数据分析第二版,541页pdf
专知会员服务
192+阅读 · 2020年3月12日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
《Nature》纪念人工智能60周年专题:深度学习综述
深度学习世界
3+阅读 · 2018年7月23日
已删除
将门创投
3+阅读 · 2018年4月10日
神经网络可解释性最新进展
专知
18+阅读 · 2018年3月10日
谷歌Jeff Dean团队发文,探讨「学习模型」如何替代传统索引结构
北京思腾合力科技有限公司
5+阅读 · 2017年12月15日
一位数据分析师的书单
R语言中文社区
12+阅读 · 2017年10月28日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
8+阅读 · 2019年3月28日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
3+阅读 · 2018年4月18日
VIP会员
相关资讯
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
《Nature》纪念人工智能60周年专题:深度学习综述
深度学习世界
3+阅读 · 2018年7月23日
已删除
将门创投
3+阅读 · 2018年4月10日
神经网络可解释性最新进展
专知
18+阅读 · 2018年3月10日
谷歌Jeff Dean团队发文,探讨「学习模型」如何替代传统索引结构
北京思腾合力科技有限公司
5+阅读 · 2017年12月15日
一位数据分析师的书单
R语言中文社区
12+阅读 · 2017年10月28日
Top
微信扫码咨询专知VIP会员