对迁移学习中域适应的理解和3种技术的介绍

2022 年 7 月 27 日 极市平台
↑ 点击 蓝字  关注极市平台

作者丨ronghuaiyang
来源丨小白学视觉
编辑丨极市平台

极市导读

 

本文将围绕迁移学习中的域适应,介绍3种技术实现任意域适应算法,实现在一个标签可用的数据集(源)上训练神经网络,并在另一个标签不可用的数据集(目标)上保证良好的性能的目标。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

如何理解域适应

域适应是计算机视觉的一个领域,我们的目标是在 源数据集上训练一个神经网络,并确保在显著不同于源数据集的 目标数据集上也有良好的准确性。为了更好地理解域适应和它的应用,让我们先看看它的一些用例。
  • 我们有很多不同用途的标准数据集,比如GTSRB用于交通标志识别,LISA和LARA dataset用于交通信号灯检测,COCO用于目标检测和分割等。然而,如果你想让神经网络很好地完成你的任务,比如识别印度道路上的交通标志,那么你必须首先收集印度道路的所有类型的图像,然后为这些图像做标注,这是一项费时费力的任务。在这里我们可以使用域适应,因为我们可以在GTSRB(源数据集)上训练模型,并在我们的印度交通标志图像(目标数据集)上测试它。

  • 在很多情况下很难收集数据集,这些数据集具有训练鲁棒神经网络所需的所有变化和多样性。在这种情况下,在不同的计算机视觉算法的帮助下,我们可以生成具有我们需要的所有变化的大型合成数据集。然后在合成数据集(源数据集)上训练神经网络,并在真实数据集(目标数据集)上测试它。

为了更好地理解,我假设我们对目标数据集没有可用的标注,但这不是唯一的情况。因此在域适应方面,我们的目标是在一个标签可用的数据集(源)上训练神经网络,并在另一个标签不可用的数据集(目标)上保证良好的性能。
分类pipeline
现在让我们看看如何实现我们的目标。考虑以上图像分类的例子。为了从一个域适应到另一个域,我们希望我们的分类器能够很好地从源数据集和目标数据集中提取特征。由于我们已经在源数据集上训练了神经网络,分类器必须在源数据集上表现良好。然而,为了使分类器在目标数据集上表现良好,我们希望从源数据集和目标数据集提取的特征是相似的。因此,在训练时,我们加强特征提取,为源和目标域图像提取相似的特征。
成功的域适应

基于目标域的域自适应类型

根据目标域提供的数据类型,域适应可分为以下几类:
  • 监督 — 你已经标记了来自目标域的数据,目标域数据集的大小比源数据集小得多。
  • 半监督 — 你既有目标域的标记数据也有未标记数据。
  • 无监督的 — 你有很多目标域的未标记样本。

域适应技术

主要采用三种技术实现任意域适应算法。以下是域适应的三种技术:
  • 基于分布的域适应
  • 基于对抗性的域适应
  • 基于重建的域适应
现在让我们逐个来看每种技术。

基于分布的域适应

基于散度的域适应原理是最小化源与目标分布之间的散度准则,从而得到域不变性特征。常用的分布准则有对比域描述、相关对齐、最大平均差异(MMD),Wasserstein等。为了更好地理解这个算法,让我们先看看一些不同的分布。在最大平均差异(MMD)中,我们试图找出给定的两个样本是否属于相同的分布。我们将两个分布之间的距离定义为平均嵌入特征之间的距离。如果我们有两个在集合 X上的分布 PQ。MMD通过一个特征映射来定义,𝜑: XH,这里H再生核希尔伯特空间。MMD的公式如下:
为了更好地了解MMD,请查看以下描述: 如果两个分布的矩相似,则它们是相似的。通过使用kernel,我可以对变量进行变换,从而计算出所有的矩(一阶,二阶,三阶等)。在潜在空间中,我可以计算出矩之间的差值并求其平均值。
在相关对齐中,我们尝试对源和目标域之间的相关(二阶统计量)进行对齐,而不是使用MMD中的线性变换对均值进行对齐。
训练时
推理时
上面的结构假设源域和目标域有相同的类别。在上述架构中,在训练过程中,我们最小化了两种损失,分类损失和基于散度的损失。分类损失通过对特征提取器和分类器的权值进行更新,确保获得良好的分类性能。而散度损失则通过更新特征提取器的权值来保证源域和目标域的特征相似。
在推理过程中,我们只需将目标域图像通过神经网络。所有的分布通常是非参数而且是人工的数学公式,不是专门针对数据集或我们的问题的,如分类,目标检测,分割等。因此,这种基于分布的方法并不能很好地解决我们的问题。但是,如果分布可以通过数据集或问题来学习,那么它将比传统的预定义分布表现得更好。

基于对抗的域适应

为了实现基于对抗性的域适应,我们使用GANs。这里我们的生成器是简单的特征提取器,我们添加了新的判别器网络,学习区分源和目标域的特征。由于这是一个双人游戏,判别器帮助生成器产生的特征对于源和目标领域是不可区分的。由于我们有一个可学习的判别器网络,我们学习特定于我们的问题和数据集的特征提取,这可以帮助区分源和目标域,从而帮助生成器产生更鲁棒的特征,即,不能很容易区分的特征。
训练时,在源域上
训练时,在目标域上
假设是分类问题,我们使用两种损失,分类损失和判别器损失。分类损失的目的已在前面说明。判别器损失有助于判别器正确地区分源域和目标域的特征。这里我们使用梯度反向层(GRL)来实现对抗性训练。GRL block是一个简单的block,它在反向传播时将梯度乘以-1或一个负值。
在训练过程中,为了更新生成器,我们有来自两个方向的梯度,首先来自分类器,其次来自判别器。由于GRL的存在,判别的梯度乘以一个负值,导致训练生成器的效果与判别器相反。例如,如果优化判别器损失函数的计算梯度为2,那么我们使用-2(假设负值为-1)来更新生成器。通过这种方式,我们试图训练生成器,使其生成即使是判别器也无法区分源域和目标域的特征。GRL层在许多域适应的文献中都有广泛的应用。

基于重建的域适应

这是基于图像到图像的转换。一个简单的方法是学习从目标域图像到源域图像的转换,然后在源域上训练一个分类器。我们可以用这个想法引入多种方法。图像到图像转换的最简单模型可以是基于编码器-解码器的网络,并使用判别器强制编码器 — 解码器网络生成与源域相似的图像。
训练时
测试时
另一种方法是使用CycleGANs。在Cycle GAN中采用了基于两种编解码器的神经网络。一个用于将目标转换为源域,另一个用于将源转换为目标域。我们同时训练了生成两个域(源域和目标域)图像的GANs。为了保证一致性,引入了 循环一致性损失。这可以确保从一个域转换到另一个域,然后再转换回来,得到与输入大致相同的图像。因此,两个配对网络的总损失和是判别器损失与循环一致性损失的和。

总结

我们已经看到了三种不同的技术,可以帮助我们实现或实施不同的域适应方法。它在图像分类、目标检测、分割等不同任务中都有很大的应用。在某些方面,我们可以说,这种方法类似于人类如何学习视觉识别不同的东西。我希望这个博客能让你了解我们是如何思考不同的域适应pipelines的。
英文原文链接
https://levelup.gitconnected.com/understanding-domain-adaptation-63b3bb89436f


公众号后台回复“ECCV2022”获取论文分类资源下载~

△点击卡片关注极市平台,获取 最新CV干货


极市干货

算法项目: CV工业项目落地实战 目标检测算法上新!(年均分成5万)
实操教程 Pytorch - 弹性训练原理分析《CUDA C 编程指南》导读
极视角动态: 极视角作为重点项目入选「2022青岛十大资本青睐企业」榜单! 极视角发布EQP激励计划,招募优质算法团队展开多维度生态合作! 极市AI校园大使招募


点击阅读原文进入CV社区

收获更多技术干货



登录查看更多
1

相关内容

【MIT博士论文】实用机器学习的高效鲁棒算法,142页pdf
专知会员服务
56+阅读 · 2022年9月7日
【伯克利博士论文】学习跨领域的可迁移表示
专知会员服务
46+阅读 · 2022年8月17日
视觉识别的无监督域适应研究综述
专知会员服务
30+阅读 · 2021年12月17日
贝叶斯迁移学习: 迁移学习的概率图模型概述
专知会员服务
67+阅读 · 2021年10月17日
最新《域自适应视觉应用》ECCV2020教程,67页PPT
专知会员服务
26+阅读 · 2020年12月24日
最新《域自适应视觉应用》ECCV2020教程,43页PPT
专知会员服务
25+阅读 · 2020年11月5日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
如何解决计算机视觉中的深度域适应问题?
AI前线
28+阅读 · 2019年7月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【迁移学习】简述迁移学习在深度学习中的应用
产业智能官
15+阅读 · 2018年1月9日
【迁移学习】迁移学习在图像分类中的简单应用策略
TensorFlow图像分类教程
机器学习研究会
33+阅读 · 2017年12月29日
迁移学习在深度学习中的应用
专知
23+阅读 · 2017年12月24日
深度 | 迁移学习全面概述:从基本概念到相关研究
七月在线实验室
15+阅读 · 2017年8月15日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
26+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月3日
VIP会员
相关VIP内容
【MIT博士论文】实用机器学习的高效鲁棒算法,142页pdf
专知会员服务
56+阅读 · 2022年9月7日
【伯克利博士论文】学习跨领域的可迁移表示
专知会员服务
46+阅读 · 2022年8月17日
视觉识别的无监督域适应研究综述
专知会员服务
30+阅读 · 2021年12月17日
贝叶斯迁移学习: 迁移学习的概率图模型概述
专知会员服务
67+阅读 · 2021年10月17日
最新《域自适应视觉应用》ECCV2020教程,67页PPT
专知会员服务
26+阅读 · 2020年12月24日
最新《域自适应视觉应用》ECCV2020教程,43页PPT
专知会员服务
25+阅读 · 2020年11月5日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
相关资讯
如何解决计算机视觉中的深度域适应问题?
AI前线
28+阅读 · 2019年7月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【迁移学习】简述迁移学习在深度学习中的应用
产业智能官
15+阅读 · 2018年1月9日
【迁移学习】迁移学习在图像分类中的简单应用策略
TensorFlow图像分类教程
机器学习研究会
33+阅读 · 2017年12月29日
迁移学习在深度学习中的应用
专知
23+阅读 · 2017年12月24日
深度 | 迁移学习全面概述:从基本概念到相关研究
七月在线实验室
15+阅读 · 2017年8月15日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
26+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员