自然语言处理中深度学习模型对抗性攻击综述,41页pdf论文

2020 年 4 月 19 日 专知


随着高计算设备的发展,深度神经网络(DNNs)近年来在人工智能(AI)领域得到了广泛的应用。然而,之前的研究表明,DNN在经过策略性修改的样本(称为对抗性样本)面前是脆弱的。这些样本是由一些不易察觉的扰动产生的,但可以欺骗DNN做出错误的预测。受图像DNNs中生成对抗性示例的流行启发,近年来出现了针对文本应用的攻击DNNs的研究工作。然而,现有的图像扰动方法不能直接应用于文本,因为文本数据是离散的。在这篇文章中,我们回顾了针对这一差异的研究工作,并产生了关于DNN的电子对抗实例。我们对这些作品进行了全面的收集、选择、总结、讨论和分析,涵盖了所有相关的信息,使文章自成一体。最后,在文献回顾的基础上,我们提出了进一步的讨论和建议。

https://arxiv.org/abs/1901.06796


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“ADM” 就可以获取自然语言处理中深度学习模型对抗性攻击综述,41页pdf论文》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
299+阅读 · 2020年6月16日
专知会员服务
109+阅读 · 2020年5月21日
最新《深度学习行人重识别》综述论文,24页pdf
专知会员服务
81+阅读 · 2020年5月5日
【综述】基于图的对抗式攻击和防御,附22页论文下载
专知会员服务
69+阅读 · 2020年3月5日
【浙江大学】对抗样本生成技术综述
专知会员服务
92+阅读 · 2020年1月6日
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
106页《深度CNN-目标检测》综述进展论文
专知
4+阅读 · 2018年9月30日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
19+阅读 · 2019年4月5日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Area Attention
Arxiv
5+阅读 · 2019年2月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关论文
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
19+阅读 · 2019年4月5日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Area Attention
Arxiv
5+阅读 · 2019年2月5日
Arxiv
12+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员