可怕,40 行代码的人脸识别实践

2017 年 7 月 22 日 51CTO博客 刘潇龙

最近听说有这么一个黑科技,让之前闯红灯有恃无恐的人们纷纷给交警部门打电话,求交警叔叔能不能把自己的照片撤下来......


闯红灯这件事情,一直是交通问题的一大头疼病。自从交通法对机动车闯红灯进行扣 6 分的举措后,很多司机朋友们纷纷表示不敢怠慢了。

机动车好了,可是非机动车和行人闯红灯的病咋治?当中国式过马路已经深入人心的时候,这不,黑科技来了,乍一看还真的很像警方在搜捕嫌疑人。

近期山东、江苏、深圳等一些城市开始在交通路口上启用了人脸识别系统,针对行人和非机动车闯红灯等违规行为进行抓拍,并现场进行曝光。


而对于行人和非机动车闯红灯的行为,交管部门将会给予 20 元到 50 元的罚款。

虽然罚款钱数不多,但是最让大家忌惮的就是,你不文明行为的视频和你的个人信息,都会在大屏幕上全天轮次播放。交警叔叔说了,被拍的市民纷纷表示下次再也不敢闯红灯了。

人脸抓拍系统的工作原理是:当红灯亮起后,如有行人和非机动车越过停止线,系统会自动抓拍四张照片,保留 15 秒视频并截取违法者头像,即便在晚上也能清晰成像。除了现场回放,交管部门还将连接的户籍信息进行曝光。


人脸识别技术到底是怎样实现的呢?

很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上 N 页的教程立马就放弃了。


这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。


今天我们就来看看如何在 40 行代码以内简单地实现人脸识别


一点区分

对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有意无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。


其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。


今天我们要做的是人脸识别。


所用工具

  • Anaconda 2 —— Python 2

  • Dlib

  • scikit-image

Dlib

对于今天要用到的主要工具,还是有必要多说几句的。Dlib 是基于现代 C++ 的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。


Dlib 内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib 的文档非常完善,例子非常丰富。就像很多库一样,Dlib 也提供了 Python 的接口,安装非常简单,用 pip 只需要一句即可:

  
    
    
  1. pip install dlib

上面需要用到的 scikit-image 同样只是需要这么一句:

  
    
    
  1. pip install scikit-image

注:如果用 pip install dlib 安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。


人脸识别

之所以用 Dlib 来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib 里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。


今天我们主要目的是实现,而不是深究原理。例子既然代码不超过 40 行,其实是没啥难度的。


首先先通过文件树看一下今天需要用到的代码:

准备了六个候选人的图片放在 candidate-faces 文件夹中,然后需要识别的人脸图片 test.jpg 。我们的工作就是要检测到 test.jpg 中的人脸,然后判断她到底是候选人中的谁。


另外的 girl-face-rec.py 是我们的 python 脚本。 


shape_predictor_68_face_landmarks.dat 是已经训练好的人脸关键点检测器。 


dlib_face_recognition_resnet_model_v1.dat 是训练好的 ResNet 人脸识别模型。


ResNet 是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比 CNN 更加强大。


前期准备

shape_predictor_68_face_landmarks.dat和 dlib_face_recognition_resnet_model_v1.dat 都可以在这里找到。


不能点击超链接的可以直接输入以下网址:http://dlib.net/files/。


然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到 candidate-faces 文件夹中。


本文这里准备的是六张图片,如下:

她们分别是:

然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。


识别流程

数据准备完毕,接下来就是代码了。识别的大致流程是这样的:

  • 先对候选人进行人脸检测、关键点提取、描述子生成后,把候选人描述子保存起来。

  • 然后对测试人脸进行人脸检测、关键点提取、描述子生成。

  • 最后求测试图像人脸描述子和候选人脸描述子之间的欧氏距离,距离最小者判定为同一个人。

代码

代码不做过多解释,因为已经注释的非常完善了。以下是 girl-face-rec.py:

  
    
    
  1. # -*- coding: UTF-8 -*-

  2. import sys,os,dlib,glob,numpy

  3. from skimage import io

  4. if len(sys.argv) != 5:

  5.     print "请检查参数是否正确"

  6.     exit()

  7. # 1.人脸关键点检测器

  8. predictor_path = sys.argv[1]

  9. # 2.人脸识别模型

  10. face_rec_model_path = sys.argv[2]

  11. # 3.候选人脸文件夹

  12. faces_folder_path = sys.argv[3]

  13. # 4.需识别的人脸

  14. img_path = sys.argv[4]

  15. # 1.加载正脸检测器

  16. detector = dlib.get_frontal_face_detector()

  17. # 2.加载人脸关键点检测器

  18. sp = dlib.shape_predictor(predictor_path)

  19. # 3. 加载人脸识别模型

  20. facerec = dlib.face_recognition_model_v1(face_rec_model_path)

  21. # win = dlib.image_window()

  22. # 候选人脸描述子list

  23. descriptors = []

  24. # 对文件夹下的每一个人脸进行:

  25. # 1.人脸检测

  26. # 2.关键点检测

  27. # 3.描述子提取

  28. for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):

  29.    print("Processing file: {}".format(f))

  30.    img = io.imread(f)

  31.    #win.clear_overlay()

  32.    #win.set_image(img)

  33.    # 1.人脸检测

  34.    dets = detector(img, 1)

  35.    print("Number of faces detected: {}".format(len(dets)))

  36.    for k, d in enumerate(dets):  

  37.    # 2.关键点检测

  38.    shape = sp(img, d)

  39.    # 画出人脸区域和和关键点

  40.    # win.clear_overlay()

  41.    # win.add_overlay(d)

  42.    # win.add_overlay(shape)

  43.    # 3.描述子提取,128D向量

  44.    face_descriptor = facerec.compute_face_descriptor(img, shape)

  45.    # 转换为numpy array

  46.    v = numpy.array(face_descriptor)  

  47.    descriptors.append(v)

  48. # 对需识别人脸进行同样处理

  49. # 提取描述子,不再注释

  50. img = io.imread(img_path)

  51. dets = detector(img, 1)

  52. dist = []

  53. for k, d in enumerate(dets):

  54.    shape = sp(img, d)

  55.    face_descriptor = facerec.compute_face_descriptor(img, shape)

  56.    d_test = numpy.array(face_descriptor)

  57.    # 计算欧式距离

  58.    for i in descriptors:

  59.    dist_ = numpy.linalg.norm(i-d_test)

  60.    dist.append(dist_)

  61. # 候选人名单

  62. candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']

  63. # 候选人和距离组成一个dict

  64. c_d = dict(zip(candidate,dist))

  65. cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])

  66. print "\n The person is: ",cd_sorted[0][0]  

  67. dlib.hit_enter_to_continue()

运行结果

我们在 .py 所在的文件夹下打开命令行。运行如下命令


python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg


由于 shape_predictor_68_face_landmarks.dat 和 dlib_face_recognition_resnet_model_v1.dat 名字实在太长,所以我把它们重命名为 1.dat 和 2.dat 。


运行结果如下:

  
    
    
  1. The person is Bingbing。

记忆力不好的同学可以翻上去看看 test1.jpg 是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。


这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人 4。对比一下两张图片可以很容易发现混淆的原因。


机器毕竟不是人,机器的智能还需要人来提升。


有兴趣的朋友可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的,全凭自己了。


作者:刘潇龙

编辑:陶家龙、孙淑娟

本文转载自腾讯云技术社区


精彩文章推荐:

登录查看更多
3

相关内容

人脸识别,特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等...
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
62+阅读 · 2020年5月15日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
161+阅读 · 2020年5月14日
《深度学习》圣经花书的数学推导、原理与Python代码实现
算法与数据结构Python,369页pdf
专知会员服务
162+阅读 · 2020年3月4日
【经典书】Python计算机视觉编程,中文版,363页pdf
专知会员服务
139+阅读 · 2020年2月16日
近期必读的5篇 CVPR 2019【图卷积网络】相关论文和代码
专知会员服务
32+阅读 · 2020年1月10日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
82个Python机器学习代码和实践案例让你受益终生!
算法与数据结构
21+阅读 · 2018年12月26日
人脸识别入门实战
人工智能头条
4+阅读 · 2018年12月12日
教程 | 如何构建自定义人脸识别数据集
机器之心
5+阅读 · 2018年6月25日
实战 | 40行代码实现人脸识别
七月在线实验室
3+阅读 · 2018年3月7日
Python | 50行代码实现人脸检测
计算机与网络安全
3+阅读 · 2018年1月23日
推荐|基于Python的人脸识别库,离线识别率高达99.38%!
全球人工智能
3+阅读 · 2017年12月25日
无人驾驶免费、人脸识别免费、语音识别免费…百度要干啥?
人工智能机器人联盟
4+阅读 · 2017年12月15日
开源 | 基于Python的人脸识别:识别准确率高达99.38%!
全球人工智能
4+阅读 · 2017年7月29日
基于Python的开源人脸识别库:离线识别率高达99.38%
炼数成金订阅号
5+阅读 · 2017年7月28日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
4+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2018年1月19日
VIP会员
相关VIP内容
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
62+阅读 · 2020年5月15日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
161+阅读 · 2020年5月14日
《深度学习》圣经花书的数学推导、原理与Python代码实现
算法与数据结构Python,369页pdf
专知会员服务
162+阅读 · 2020年3月4日
【经典书】Python计算机视觉编程,中文版,363页pdf
专知会员服务
139+阅读 · 2020年2月16日
近期必读的5篇 CVPR 2019【图卷积网络】相关论文和代码
专知会员服务
32+阅读 · 2020年1月10日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
相关资讯
82个Python机器学习代码和实践案例让你受益终生!
算法与数据结构
21+阅读 · 2018年12月26日
人脸识别入门实战
人工智能头条
4+阅读 · 2018年12月12日
教程 | 如何构建自定义人脸识别数据集
机器之心
5+阅读 · 2018年6月25日
实战 | 40行代码实现人脸识别
七月在线实验室
3+阅读 · 2018年3月7日
Python | 50行代码实现人脸检测
计算机与网络安全
3+阅读 · 2018年1月23日
推荐|基于Python的人脸识别库,离线识别率高达99.38%!
全球人工智能
3+阅读 · 2017年12月25日
无人驾驶免费、人脸识别免费、语音识别免费…百度要干啥?
人工智能机器人联盟
4+阅读 · 2017年12月15日
开源 | 基于Python的人脸识别:识别准确率高达99.38%!
全球人工智能
4+阅读 · 2017年7月29日
基于Python的开源人脸识别库:离线识别率高达99.38%
炼数成金订阅号
5+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员