©作者 | 孙培泽
单位 | 香港大学
研究方向 | 计算机视觉
论文链接:
代码链接:
独立的模型设计导致冗余的参数。例如,基于深度学习的跟踪器通常采用类似的backbone结构,但独立的跟踪模块设计理念阻碍了潜在的参数复用的可能。
模型的输入不同。大多数 SOT 方法为了节省计算量并过滤潜在的干扰物,都是以一个小的搜索区域作为输入。然而,MOT 算法为了将实例尽可能全地检测到,通常以高分辨率的全图作为输入。
借助目标先验和精确的的像素级对应关系,SOT 可以不再依赖搜索区域,从而和 MOT 一样接收全图作为输入。
对于 MOT&MOTS,实例级对应关系(instance-level correspondence)将第 t 帧上检测到的实例与参考帧(通常是第 t-1 帧)上的现有轨迹相关联。
对于 MOT&MOTS 来说,实例级对应关系可通过标准的对比学习范式得到,对于参考帧和当前帧上的实例,属于同一 ID 的为正样本,其余的为负样本。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧