完美替代Mask RCNN!BlendMask:实例分割新标杆

2020 年 1 月 10 日 计算机视觉life

点击上方“计算机视觉life”,选择“星标”

快速获得第一手干货


今天新出的论文BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation,提出一种自顶向下自底向上设计策略相结合的实例分割算法BlendMask,在精度上超越了Mask RCNN,速度上快20%,可谓完美替代Mask RCNN的实例分割新标杆!


该文作者信息:


作者团队来自阿德莱德大学、东南大学和华为诺亚方舟实验室。


BlendMask算法思想结果示例:



上图展示了Blend过程,BlendMask分支得到的Bases和检测分支得到的attns注意力结果,一一对应按元素相乘再相加合成,得到最终的实例分割结果。


网络架构


作者是在SOTA 目标检测算法FCOS基础上改进得到BlendMask,下图橙色部分为实例分割的检测分支,绿色部分为使用FPN特征预测的一组bases。



检测分支得到目标包围框和attns注意力区块,其和Bottom 模块的结果Bases 经Blender模块blend成最终的分割结果。


下图为Bases 和 attentions 结果示意图:



实验结果


作者将BlendMask 与其他SOTA实例分割算法在COCO test-dev数据集上进行了比较:




BlendMask 在速度最快的的同时精度最高!


下图为一些分割结果示例:



该文提出的方法分割结果更加精确细致。


详细信息请查看原论文。


论文地址

https://arxiv.org/pdf/2001.00309.pdf


期待作者早日开源代码~

交流群

欢迎加入公众号读者群一起和同行交流,目前覆盖SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、Re-id、强化学习、模型压缩剪枝、医学影像、GAN算法竞赛等微信群,请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

投稿、合作也欢迎联系:simiter@126.com

长按关注计算机视觉life


推荐阅读

最全综述 | 医学图像处理

最全综述 | 图像分割算法

最全综述 | 图像目标检测

目标检测技术二十年综述

综述 | CVPR2019目标检测方法进展
参加 CVPR 2019 技术见闻总结

现在投身于计算机视觉是否明智?

如何激怒一个自动驾驶(无人驾驶、智能汽车)爱好者?

原来CNN是这样提取图像特征的。

AI资源对接需求汇总:第1期
AI资源对接需求汇总:第2期
AI资源对接需求汇总:第3期

计算机视觉方向简介 | 人体骨骼关键点检测综述

计算机视觉方向简介 | 人脸识别中的活体检测算法综述

计算机视觉方向简介 | 目标检测最新进展总结与展望

计算机视觉方向简介 | 人脸表情识别

计算机视觉方向简介 | 人脸颜值打分

计算机视觉方向简介 | 深度学习自动构图

计算机视觉方向简介 | 基于RGB-D的3D目标检测

计算机视觉方向简介 | 人体姿态估计


最新AI干货,我在看  

登录查看更多
2

相关内容

深度学习目标检测方法及其主流框架综述
专知会员服务
147+阅读 · 2020年6月26日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
专知会员服务
86+阅读 · 2019年12月13日
一文概览用于图像分割的CNN
论智
14+阅读 · 2018年10月30日
资源丨用PyTorch实现Mask R-CNN
量子位
6+阅读 · 2018年7月23日
从FPN到Mask R-CNN,一文告诉你Facebook的计算机视觉有多强
人工智能头条
6+阅读 · 2018年3月20日
从R-CNN到Mask R-CNN
机器学习研究会
25+阅读 · 2017年11月13日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
12+阅读 · 2019年1月24日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关资讯
相关论文
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
12+阅读 · 2019年1月24日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员