【文章】深度神经网络中的对抗样本与学习7篇文章

2017 年 9 月 8 日 GAN生成式对抗网络

作者:Adrian Colyer

作者简介:Adrian Colyer:morning paper编辑、Accel Partners投资合伙人、SpringSource首席技术官、VMware技术总监。


1.深层神经网络容易被愚弄


上图是一个犰狳!下面图像更容易看清,是0到9之间某个数字的五幅不同图像。


(明显是数字4

你所看到的是对抗图像,而不再像从人的角度来看到的目标类别。显然,DNN并没有与我们以相同的方式学习解释图像。对抗图像是使用进化算法(EA)创建的,标准EA使用单一的适应度函数,但是作者使用MAP-Elites的新算法,并测试了两种不同的突变策略。

MNIST为例(数字0-9),使用直接编码突变创建这些图像:


下面使用间接编码突变创建的:


使用CPNN编码和故意进化的图像来匹配目标DNN类别可以产生各种各样的图像:

通过从生成的图像中移除一些重复的元素,DNN的置信度得分下降。“这些结果表明,DNN倾向于学习低级和中级特征,而不是物体的全局结构”。

作者尝试通过将培训机制扩展到包含这些负面例子,使DNN对这些对抗图像更加强大,但总是可能产生新的对抗样本,仍会愚弄所产生的网络。



原文:Deep neural networks are easily fooledNguyen et al, 2015


2.使用对抗样本对深度学习系统实施黑盒攻击

这是熊猫(59.7%的置信度):

但是,这显然是一种长臂猿(99.3%置信度):

攻击者的目标是找到一个小的、不可察觉扰动的现有图像,以强制分类器去错误分类,而同个图像仍能被人类正确分类。用于产生对抗图像的先前技术依赖于对完整训练集的访问和网络中的隐藏权重。这篇文章表明, 所有你需要的就是将输入传递给分类器,学习后预测类别。攻击通过使用目标DNN作为oracle来训练替代模型。目标输入是合成生成,传递给oracle(受攻击的系统),输出标签成为替代模型的训练标签。可以使用一般的白盒技术创建成功的对抗图像。

事实上,攻击不仅适用于DNN目标,而且还涉及到附加的机器学习模型(线性回归、SVM、决策树和最近邻域)。作者通过使用MetaMind,Google和Amazon分别提供的三种云ML服务,显示了攻击网络盲人的能力。在每种情况下,训练数据被上传到服务,该服务学习分类器。然后使用替代网络技术来找到愚弄分类器的样本。对MNIST的测试精度达到92.17%的亚马逊分类器可能被96.19%的对抗样本所欺骗;在MNIST上获得了92%的测试准确性的Google分类器,可能被88.94%的对抗样本所欺骗。基于梯度掩蔽的防御对抗替换攻击而言不是有效。


原文:Practical black-box attacks against deep learning systems using adversarial examples, Papernot et al, 2016


3.物理世界中的对抗样本

到目前为止,所有以前的工作中对手可以将数据直接提供给机器学习的分类器。对于在物理世界中运行的系统来说,并不总是这样。本文表明,即使在物理世界场景中,机器学习系统也容易受到对抗样本的影响。作者打印清晰图片和对抗图像,并拍摄打印的图像,将这些照片裁剪后送入分类器。该过程通过手动摄影进行,并且不需要仔细控制照明等引入多余变量,具有根据微妙变化破坏对抗扰动的潜力。


总体来说,结果表明对抗样本的一小部分仍然被错误分类:照相变换证明了物理对抗的可能性。因此,通过产生足够的对抗图像,对手可能会产生比自然输入更多的错误分类。


原文:Adversarial examples in the physical world, Goodfellow et al, 2017


4.解释和利用对抗样本

为什么这些对抗样本有效?Goodfellow等人解释,这是为了在高维空间中攻击是线性行为。文章结果表明基于现代机器学习技术的分类器,即使在测试集上获得出色性能的分类器也没有真正学习确定正确输出标签的特征。考虑在高维线性分类器中,每个单独的输入特征被归一化。对于任何一个输入,小的改变将不会改变分类器的总体预测。但对输入进行许多次无穷小的改变,会导致输出有大的变化。

可以通过调整相应权重的符号变化来最大限度地发挥许多小变化对其的影响。这也是一种产生对抗图像的快速方式。对抗样本一个有趣的方面是一个模型生成的示例通常会被其他模型错误分类。

解释表明,由于其线性设计出易于训练的模型和使用非线性效应来抵抗对抗扰动的模型之间造成了根本的紧张。从长远来看,可以通过设计更强大的优化方法来成功地训练更多的非线性模型以逃避这种折中。


原文:Explaining and harnessing adversarial examples, Goodfellow et al, 2015


5.蒸馏作为深层神经网络抵御对抗扰动的防御

Papernot等人表明蒸馏技术(使用概率分布作为目标训练)也可以用于大大降低网络对抗扰动的脆弱性。对于MNIST数据集训练的DNN,防御性蒸馏将对抗样本的成功率从95.89%降低到0.45%!针对CIFAR数据集而言,成功率由87.89%降至5.11%。事实上,防御性蒸馏可以降低DNN对输入扰动的灵敏度。

以下是MNIST和CIFAR的一些示例,显示正当样本和对抗样本:


下面介绍防御性蒸馏如何工作以及其原理。考虑一般的对抗框架,首先搞清楚工作方向是围绕给定的输入样本,然后使用这些信息选择输入维度之间的扰动。


如果梯度方向陡峭,就会对小扰动产生很大的影响。为了防止这种扰动,必须通过网络更好地泛化训练数据集以外的样本来平滑训练过程中学到的模型。DNN对对抗样本的“鲁棒性”与给定样本邻域相一致地分类输入相关。


为了实现这种平滑,蒸馏防御首先按照正常的方式训练分类网络,然后用从第一个模型学到的概率向量训练另外一个完全相同架构的新模型。


以这种方式训练网络,有助于更好的泛化。下图展示蒸馏温度如何影响模型对抗样本的防御能力。直观上,温度越高防御越好。


蒸馏对分级精度影响不大,甚至有可能会提升。防御性蒸馏仅适用于基于能量概率分布的DNN模型,因此建立通用对抗样本强大的机器学习模型的重要一步。不幸的是,文章表明,甚至连防御性蒸馏也不足以减轻对抗,并证明了防御性蒸馏是无效的。


原文:Distillation as a defense to adversarial perturbations against deep neural networks, Papernot et al., 2016


6.深层强化学习对政策诱导攻击的脆弱性

这篇文章和下一篇文章告诉我们,深度强化学习网络(比如DQNs)也容易受到对抗攻击。强化学习与环境相互作用的依赖性导致固有的脆弱性,这使得学习过程易受环境扰动影响,利用此漏洞可以让对手想到干扰或改变控制策略的方法。幸运的是,攻击者的目标是欺骗一个DQN使其采取攻击者选择的动作,但我们已经知道许多制作攻击所需的构建块。假设威胁模型类似于“黑盒”模型,攻击者可以根据DQN的输入以及观察到DQN采取的行动估计出报酬函数。第一步是“黑盒攻击”技术来训练与目标选择的策略相匹配的替代DQN。下一步是找到一种将这种学习对抗政策转移到目标网络的方法。这是在开发周期中完成的:


需要回答的第一个问题是“是否可能产生DQN的对抗样本?” 从下可知答案是肯定的:


必须回答的第二个问题是,这些对抗样本是否可以转移。答案是肯定的:



由于所有已知的对策表明是不充分的,因此目前抵抗对抗样本的最新水平不能提供具体的防范来防备这样的开发。


原文:Vulnerability of deep reinforcement learning to policy induction attacks, Behzadan & Munir, 2017


7.神经网络策略上的对抗攻击

Huang等人发表的这项工作也表明强化学习网络容易受到对抗性攻击。首先通过使用白盒攻击展示了这点,还表明在一系列深度强化学习算法(DQN、TRPO和A3C)中对抗也会成功。然后作者使用黑盒攻击演示了转移能力,结合在之前“物理世界中的对抗样本”中学到的经验。作者指出,即使在黑盒子情况下,计算效率高的对抗样本很容易迷惑这样的政策,可以将这些对抗扰动应用于现实世界中的对象,例如在道路表面的增加特制漆以迷惑自动驾驶汽车的车道追踪策略。


原文:Adversarial attacks on neural network policies, Huang et al. 2017


高质量延伸阅读

☞ 【独家】颜水成和冯佳时团队一作详解CVPR录用论文:基于对抗擦除的物体区域挖掘

☞ 【发现】研究发现人工智能可被“障眼法”欺骗

☞ 【历程】GAN发展历程综述:送你最易入手的几个架构 | 附资料包

☞ 【实战】GAN网络图像翻译机:图像复原、模糊变清晰、素描变彩图

☞ 【干货】可能是近期最好玩的深度学习模型了:CycleGAN的原理与实验详解

☞ 【学界】牛津大学ICCV 2017 Workshop论文:利用GAN的单视角图片3D建模技术

☞ 【深度】Yann LeCun最新演讲再谈预测学习:记忆网络和对抗训练是很有前景的方向

☞ 【分享】三角兽首席科学家分享实录:基于对抗学习的生成式对话模型

☞ 【原理】GAN的数学原理

☞ 【学界】清华朱军团队探索DNN内部架构,采用对抗性例子监督网络生成及错误

☞ 【原理】深入浅出:GAN原理与应用入门介绍

☞ 【学界】宅男的福音:用GAN自动生成二次元萌妹子

☞ 【几何图景】GAN的几何图景:样本空间的Morse流,与鉴别网络D为何不可能真正鉴别真假

☞ 【理解】GAN 的理解与 TensorFlow 的实现

☞ 【意义】GAN 的发展对于研究通用人工智能有什么意义?

☞ 【应用】生成式对抗网络GAN有哪些最新的发展,可以实际应用到哪些场景中?

☞ 【从头开始GAN】Goodfellow开山之作到DCGAN等变体

☞ 【智能自动化学科前沿讲习班第1期】上海交大倪冰冰副教授:面向图像序列的生成技术及应用初探

☞ 【智能自动化学科前沿讲习班第1期】University of Central Florida 的Guojun Qi:LS-GAN

☞ 【智能自动化学科前沿讲习班第1期】微软秦涛主管研究员:从单智能体学习到多智能体学习

☞ 【智能自动化学科前沿讲习班第1期】王坤峰副研究员:GAN与平行视觉

☞ 【原理】十个生成模型(GANs)的最佳案例和原理 | 代码+论文

☞ 【插画】AI可能真的要代替插画师了……

☞ 【教程】经得住考验的「假图片」:用TensorFlow为神经网络生成对抗样本

☞ 【模型】基于深度学习的三大生成模型:VAE、GAN、GAN的变种模型

☞ 【大会】还记得Wasserstein GAN吗?不仅有Facebook参与,也果然被 ICML 接收

☞ 【开发】 用GAN来做图像生成,这是最好的方法

☞ 【学界】邢波团队提出contrast-GAN:实现生成式语义处理

☞  【专栏】阿里SIGIR 2017论文:GAN在信息检索领域的应用

☞ 【学界】康奈尔大学说对抗样本出门会失效,被OpenAI怼回来了!

☞ 警惕人工智能系统中的木马、病毒 ——深度学习对抗样本简介

☞ 【生成图像】Facebook发布的LR-GAN如何生成图像?这里有一篇Pytorch教程

☞ 【智能自动化学科前沿讲习班第1期】国立台湾大学(位于中国台北)李宏毅教授:Anime Face Generation

☞ 【变狗为猫】伯克利图像迁移cycleGAN,猫狗互换效果感人

☞ 【论文】对抗样本到底会不会对无人驾驶目标检测产生干扰?又有人发文质疑了

【智能自动化学科前沿讲习班第1期】王飞跃教授:生成式对抗网络GAN的研究进展与展望

【开发】看完立刻理解GAN!初学者也没关系

【专栏】基于对抗学习的生成式对话模型的坚实第一步 :始于直观思维的曲折探索

☞ 【重磅】平行将成为一种常态:从SimGAN获得CVPR 2017最佳论文奖说起

☞ 【最新】OpenAI:3段视频演示无人驾驶目标检测强大的对抗性样本!

☞  【干货】生成对抗网络(GAN)之MNIST数据生成

☞ 【论文】CVPR 2017最佳论文出炉,DenseNet和苹果首篇论文获奖

☞   AI侦探敲碎深度学习黑箱

☞ 【深度学习】解析深度学习的局限性与未来,谷歌Keras之父「连发两文」发人深省

☞   苹果重磅推出AI技术博客,CVPR合成逼真照片论文打响第一枪

☞ 【Ian Goodfellow 五问】GAN、深度学习,如何与谷歌竞争

☞ 【巨头升级寡头】AI产业数据称王,GAN和迁移学习能否突围BAT垄断?

☞ 【高大上的DL】BEGAN: Boundary Equilibrium GAN

☞ 【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

☞ 【最全GAN变体列表】Ian Goodfellow推荐:GAN动物园

☞   二十世纪的十大科学骗局

☞ 【DCGAN】深度卷积生成对抗网络的无监督学习,补全人脸合成图像匹敌真实照片

【学界】让莫奈画作变成照片:伯克利图像到图像翻译新研究

☞ 【DualGAN】对偶学习的生成对抗网络

☞ 【开源】收敛速度更快更稳定的Wasserstein GAN(WGAN)

☞ 【Valse 2017】生成对抗网络(GAN)研究年度进展评述

☞ 【开源】谷歌新推BEGAN模型用于人脸数据集:效果惊人!

☞ 【深度】Ian Goodfellow AIWTB开发者大会演讲:对抗样本与差分隐私

☞   论文引介 | StackGAN: Stacked Generative Adversarial Networks

☞ 【专题GAN】GAN应用情况调研

☞ 【纵览】从自编码器到生成对抗网络:一文纵览无监督学习研究现状

☞ 【论文解析】Ian Goodfellow 生成对抗网络GAN论文解析

☞ 【VALSE 前沿】利用对抗学习改进目标检测的结果

☞ 【干货】全面分析GAN,以及如何用TF实现GAN?

☞   苹果首份AI论文横空出世,提出SimGAN训练方法

☞ 【推荐】条条大路通罗马LS-GAN:把GAN建立在Lipschitz密度上

☞   到底什么是生成式对抗网络GAN?

☞   看穿机器学习(W-GAN模型)的黑箱

☞   看穿机器学习的黑箱(II)

【Geometric GAN】引入线性分类器SVM的Geometric GAN

☞ 【征稿】“生成式对抗网络GAN技术与应用”专刊

☞ 【GAN for NLP】PaperWeekly 第二十四期 --- GAN for NLP

☞ 【学界 】 从感知机到GAN,机器学习简史梳理

☞ 【Demo】GAN学习指南:从原理入门到制作生成Demo

☞ 【学界】伯克利与OpenAI整合强化学习与GAN:让智能体学习自动发现目标

☞ 【解读】通过拳击学习生成对抗网络(GAN)的基本原理

☞ 【人物 】Ian Goodfellow亲述GAN简史:人工智能不能理解它无法创造的东西

☞ 【DCGAN】DCGAN: 一类稳定的GANs

☞ 【DCGAN】DCGAN:深度卷积生成对抗网络的无监督学习,补全人脸合成图像匹敌真实照片

☞ 【原理】 直观理解GAN背后的原理:以人脸图像生成为例

☞ 【干货】深入浅出 GAN·原理篇文字版(完整)

☞   带你理解CycleGAN,并用TensorFlow轻松实现

☞   PaperWeekly 第39期 | 从PM到GAN - LSTM之父Schmidhuber横跨22年的怨念

☞ 【CycleGAN】加州大学开源图像处理工具CycleGAN

☞ 【SIGIR2017满分论文】IRGAN:大一统信息检索模型的博弈竞争

☞ 【贝叶斯GAN】贝叶斯生成对抗网络(GAN):当下性能最好的端到端半监督/无监督学习

☞ 【贝叶斯GAN】贝叶斯生成对抗网络(GAN):当下性能最好的端到端半监督/无监督学习

☞ 【GAN X NLP】自然语言对抗生成:加拿大研究员使用GAN生成中国古诗词

☞    ICLR 2017 | GAN Missing Modes 和 GAN

☞ 【论文汇总】生成对抗网络及其变体

☞ 【AI】未来AI这样帮你一键修片,那还有PS什么事?

☞ 【学界】CMU新研究试图统一深度生成模型:搭建GAN和VAE之间的桥梁

☞ 【专栏】大漠孤烟,长河落日:面向景深结构的风景照生成技术

☞ 【开发】最简单易懂的 GAN 教程:从理论到实践(附代码)

☞ 【论文访谈】求同存异,共创双赢 - 基于对抗网络的利用不同分词标准语料的中文分词方法

☞ 【LeCun论战Yoav】自然语言GAN惹争议:深度学习远离NLP?

☞ 【争论】从Yoav Goldberg与Yann LeCun争论,看当今的深度学习、NLP与arXiv风气

☞ 【观点】Yoav Goldberg撰文再回应Yann LeCun:「深度学习这群人」不了解NLP(附各方评论)

☞   PaperWeekly 第41期 | 互怼的艺术:从零直达 WGAN-GP

☞ 【业界】CMU和谷歌联手研制左右互搏的对抗性机器人

☞ 【谷歌 GAN 生成人脸】对抗创造新艺术风格,128 像素扩展到 4000

☞ 【原理】模拟上帝之手的对抗博弈——GAN背后的数学原理

☞ 【原理】只知道GAN你就OUT了——VAE背后的哲学思想及数学原理


登录查看更多
6

相关内容

对抗样本由Christian Szegedy等人提出,是指在数据集中通过故意添加细微的干扰所形成的输入样本,导致模型以高置信度给出一个错误的输出。在正则化背景下,通过对抗训练减少原有独立同分布的测试集的错误率——在对抗扰动的训练集样本上训练网络。 对抗样本是指通过在数据中故意添加细微的扰动生成的一种输入样本,能够导致神经网络模型给出一个错误的预测结果。 实质:对抗样本是通过向输入中加入人类难以察觉的扰动生成,能够改变人工智能模型的行为。其基本目标有两个,一是改变模型的预测结果;二是加入到输入中的扰动在人类看起来不足以引起模型预测结果的改变,具有表面上的无害性。对抗样本的相关研究对自动驾驶、智能家居等应用场景具有非常重要的意义。
【ICML 2020 】小样本学习即领域迁移
专知会员服务
78+阅读 · 2020年6月26日
最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
299+阅读 · 2020年6月16日
【浙江大学】对抗样本生成技术综述
专知会员服务
92+阅读 · 2020年1月6日
你真的懂对抗样本吗?一文重新思考对抗样本背后的含义
GAN生成式对抗网络
6+阅读 · 2019年9月16日
简单到出人意料的CNN图像分类策略
机器学习算法与Python学习
4+阅读 · 2019年2月14日
2018年有意思的几篇GAN论文
GAN生成式对抗网络
6+阅读 · 2019年1月6日
前景目标检测的无监督学习
计算机视觉战队
9+阅读 · 2018年10月14日
L2正则化视角下的对抗样本
极市平台
7+阅读 · 2018年7月13日
对抗样本引发的系列讨论
机器学习研究会
5+阅读 · 2018年3月22日
一文帮你理解什么是深层置信网络(DBN)
【学界】继图像识别后,图像标注系统也被对抗样本攻陷!
GAN生成式对抗网络
6+阅读 · 2017年12月11日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
你真的懂对抗样本吗?一文重新思考对抗样本背后的含义
GAN生成式对抗网络
6+阅读 · 2019年9月16日
简单到出人意料的CNN图像分类策略
机器学习算法与Python学习
4+阅读 · 2019年2月14日
2018年有意思的几篇GAN论文
GAN生成式对抗网络
6+阅读 · 2019年1月6日
前景目标检测的无监督学习
计算机视觉战队
9+阅读 · 2018年10月14日
L2正则化视角下的对抗样本
极市平台
7+阅读 · 2018年7月13日
对抗样本引发的系列讨论
机器学习研究会
5+阅读 · 2018年3月22日
一文帮你理解什么是深层置信网络(DBN)
【学界】继图像识别后,图像标注系统也被对抗样本攻陷!
GAN生成式对抗网络
6+阅读 · 2017年12月11日
相关论文
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
20+阅读 · 2018年1月17日
Top
微信扫码咨询专知VIP会员