【AlphaGo Zero】AlphaGo Zero横空出世,DeepMind Nature论文解密不使用人类知识掌握围棋

2018 年 1 月 8 日 产业智能官 新智元

 新智元报道  

来源:Nature;DeepMind

编译:闻菲,刘小芹

 

【新智元导读】新智元AI World 2017世界人工智能大会倒计时进入20天,DeepMind 如约公布了他们最新版AlphaGo论文,也是他们最新的Nature论文,介绍了迄今最强最新的版本AlphaGo Zero,使用纯强化学习,将价值网络和策略网络整合为一个架构,3天训练后就以100比0击败了上一版本的AlphaGo。AlphaGo已经退休,但技术永存。DeepMind已经完成围棋上的概念证明,接下来就是用强化学习创造改变世界的价值。


今年5月乌镇围棋大赛时,DeepMind CEO Hassabis 表示,将在今年晚些时候公布战胜了柯洁的那版AlphaGo的技术细节。今天,这个承诺如约兑现,DeepMind在他们最新发表于Nature的一篇论文中,描述了迄今最强大的一版AlphaGo—— AlphaGo Zero 的技术细节。


AlphaGo Zero完全不依赖于人类数据,因此,这一系统的成功也是朝向人工智能研究长期以来的目标——创造出在没有人类输入的条件下,在最具挑战性的领域实现超越人类能力的算法——迈进的一大步。


作者在论文中写道,AlphaGo Zero 证明了即使在最具挑战的领域,纯强化学习的方法也是完全可行的:不需要人类的样例或指导,不提供基本规则以外的任何领域知识,使用强化学习能够实现超越人类的水平。此外,纯强化学习方法只花费额外很少的训练时间,但相比使用人类数据,实现了更好的渐进性能(asymptotic performance)。


在很多情况下,人类数据,尤其是专家数据,往往太过昂贵,或者根本无法获得。如果类似的技术可以应用到其他问题上,这些突破就有可能对社会产生积极的影响。


是的,你或许要说,AlphaGo已经在今年5月宣布退休,但AlphaGo的技术将永存,并进一步往前发展、进化。DeepMind已经完成围棋上的概念证明,接下来,就是用他们的强化学习改变世界。


这也是为什么接下来我们要介绍的这篇论文如此重要——它不仅是很多人期盼已久的技术报告,也是人工智能一个新的技术节点。在未来,它将得到很多引用,成为无数AI产业和服务的基础。



迄今最强大的围棋程序:不使用人类的知识



DeepMind这篇最新的Nature,有一个朴素的名字——《不使用人类知识掌握围棋》。



摘要


人工智能长期以来的一个目标是创造一个能够在具有挑战性的领域,以超越人类的精通程度学习的算法,“tabula rasa”(译注:一种认知论观念,认为指个体在没有先天精神内容的情况下诞生,所有的知识都来自于后天的经验或感知)。此前,AlphaGo成为首个在围棋中战胜人类世界冠军的系统。AlphaGo的那些神经网络使用人类专家下棋的数据进行监督学习训练,同时也通过自我对弈进行强化学习。


在这里,我们介绍一种仅基于强化学习的算法,不使用人类的数据、指导或规则以外的领域知识。AlphaGo成了自己的老师。我们训练了一个神经网络来预测AlphaGo自己的落子选择和AlphaGo自我对弈的赢家。这种神经网络提高了树搜索的强度,使落子质量更高,自我对弈迭代更强。从“tabula rasa”开始,我们的新系统AlphaGo Zero实现了超人的表现,以100:0的成绩击败了此前发表的AlphaGo。


DOI:10.1038/nature24270



全新的强化学习:自己成为自己的老师




DeepMind 研究人员介绍 AlphaGo Zero。视频来源:DeepMind,视频中英文字幕由Nature 上海办公室制作


AlphaGo Zero 得到这样的结果,是利用了一种新的强化学习方式,在这个过程中,AlphaGo Zero 成为自己的老师。这个系统从一个对围棋游戏完全没有任何知识的神经网络开始。然后,通过将这个神经网络与一种强大的搜索算法相结合,它就可以自己和自己下棋了。在它自我对弈的过程中,神经网络被调整、更新,以预测下一个落子位置以及对局的最终赢家。


这个更新后的神经网络又将与搜索算法重新组合,进而创建一个新的、更强大的 AlphaGo Zero 版本,再次重复这个过程。在每一次迭代中,系统的性能都得到一点儿的提高,自我对弈的质量也在提高,这就使得神经网络的预测越来越准确,得到更加强大的 AlphaGo Zero 版本。


这种技术比上一版本的 AlphaGo 更强大,因为它不再受限于人类知识的局限。相反,它可以从一张白纸的状态开始,从世界上最强大的围棋玩家——AlphaGo 自身——学习。


AlphaGo Zero 在其他方面也与之前的版本有所不同:


  • AlphaGo Zero 只使用围棋棋盘上的黑子和白子作为输入,而上一版本的 AlphaGo 的输入包含了少量人工设计的特征。


  • 它只使用一个神经网络,而不是两个。以前版本的 AlphaGo 使用一个“策略网络”(policy network)来选择下一个落子位置和一个“价值网络”(value network)来预测游戏的赢家。这些在 AlphaGo Zero 中是联合进行的,这使得它能够更有效地进行训练和评估。


  • AlphaGo Zero 不使用“走子演算”(rollout)——这是其他围棋程序使用的快速、随机游戏,用来预测哪一方将从当前的棋局中获胜。相反,它依赖于高质量的神经网络来评估落子位置。


上面的所有这些不同之处都有助于提高系统的性能,使其更加通用。但使得这个系统更加强大和高效的是算法的改变。


在进行了3天的自我训练后,AlphaGo Zero 在100局比赛中以100:0击败了上一版本的 AlphaGo——而上一版本的 AlphaGo 击败了曾18次获得围棋世界冠军的韩国九段棋士李世乭。经过 40 天的自我训练后,AlphaGo Zero 变得更加强大,超越了“Master”版本的 AlphaGo——Master 曾击败世界上最优秀的棋士、世界第一的柯洁。


在经过数以百万计的 AlphaGo vs AlphaGo 的对弈后,这个系统逐渐从零开始学会了下围棋,在短短几天内积累了人类数千年积累的知识。AlphaGo Zero 也发现了新的知识,开发出非常规的策略和创造性的新下法,这些新下法超越了它在与柯洁和李世乭比赛时发明的新技巧。


尽管目前仍处于早期阶段,但 AlphaGo Zero 成为了朝着这个目标迈进的关键一步。DeepMind 联合创始人兼 CEO Demis Hassabis 评论称:“AlphaGo在短短两年里取得了如此令人惊叹的成果。现在,AlphaGo Zero是我们项目中最强大的版本,它展示了我们在更少的计算能力,而且完全不使用人类数据的情况下可以取得如此大的进展


“最终,我们希望利用这样的算法突破来帮助解决现实世界的各种紧迫问题,例如蛋白质折叠或新材料设计。如果我们能在这些问题上取得与AlphaGo同样的进展,就有可能推动人类理解,并对我们的生活产生积极影响。”



AlphaGo Zero 技术细节拆解:将价值网络和策略网络整合为一个架构,整合蒙特卡洛搜索不断迭代



新方法使用了一个深度神经网络 fθ,参数为 θ。这个神经网络将原始棋盘表征 s(棋子位置和历史)作为输入,输出落子概率和一个值 (p, v)= fθ(s)。


落子概率向量 p 表示选择下每一步棋(包括不下)的概率。值 v 是一个标量估值,衡量当前棋手在位置 s 获胜的概率。


这个神经网络将最初的 AlphaGo(下文中的 AlphaGo Fan 和 AlphaGo Lee,分别指对战樊麾和对战李世石的版本)的策略网络和价值网络整合到一个架构里,含有很多基于卷积神经网络的残差模块,这些残差模块中使用了批正则化(batch normalization)和非线性整流函数(rectifier nonlinearities)。


AlphaGo Zero 的神经网络使用自我对弈数据做训练,这些自我对弈是在一种新的强化学习算法下完成的。在每个位置 s,神经网络 fθ 都会进行蒙特卡洛树搜索(MCTS)。MCTS 输出下每步棋的落子概率 π。这样搜索得出的概率通常比神经网络 fθ(s) 的原始落子概率 p 要更加强一些;MCTS 也因此可以被视为一个更加强大的策略提升 operator。


系统通过搜索进行自我对弈,也即使用增强的基于 MCTS 的策略选择下哪步棋,然后使用获胜者 z 作为价值样本,这个过程可以被视为一个强有力的策略评估 operator。


这一新的强化学习算法的核心思想是,在策略迭代的过程中,反复使用这些搜索  operator:神经网络的参数不断更新,让落子概率和价值 (p,v)= fθ(s) 越来越接近改善后的搜索概率和自我对弈赢家 (π, z)。这些新的参数也被用于下一次自我对弈的迭代,让搜索更强。下面的图1 展示了自我对弈训练的流程。



图1:AlphaGo Zero 自我对弈训练的流程:a. 程序自己和自己下棋,标记为s1, ..., sT。在每个位置st,一个MCTS αθ被执行(见图2),使用最新的神经网络fθ。每个走子选择的依据是通过MCTS, at ∼ πt计算的搜索概率。最终的位置sT根据游戏规则计算对局的最终胜者z。b. AlphaGo Zero 中神经网络的训练。该神经网络将棋盘位置st作为输入,与参数θ一起讲它传送到许多的卷积层,并同时输出表示每一走子的概率分布的向量 pt 和一个表示当前玩家在位置 st 上的赢率的标量值 vt。


MCTS 使用神经网络 fθ 指导其模拟(参见图2)。搜索树中的每条边 (s, a) 都存储了一个概率先验 P(s, a),一个访问数 N(s, a),以及动作值 Q(s, a)。每次模拟都从根节点状态开始,不断迭代,选择能将置信区间 Q(s, a)+ U(s, a) 的上层最大化的落子结果,直到走到叶节点 s′。


然后,网络会扩充这个叶节点,并且只进行一次评估,生成概率先验和评估值,(P(s′, ·), V(s′))= fθ(s′)。在模拟中,遍历每条边 (s, a) 后,会更新访问量 N(s, a),然后将动作值更新,取所有模拟的平均值:


MCTS 可以被看做一种自我对弈算法:给定神经网络参数 θ 和一个根节点位置 s,计算搜索概率向量推荐落子 π = αθ(s),与每步棋的访问量指数成正比,τ 是温度参数:


图2:MCTS 使用神经网络 fθ 模拟落子选择的过程示意


神经网络使用这个自我对弈的强化学习算法做训练,正如上文介绍,这个算法使用 MCTS 下每一步棋。首先,神经网络使用随机权重 θ0 初始化。在随后的每一次迭代中,i ≥ 1,生成自我对弈棋谱(参见图1的a)。在每个时间步长 t,运行一个 MCTS 搜索 πt = αθ (st),使用上一次神经网络 fθi−1 迭代的结果,然后根据搜索概率采样下出一步棋。一局棋在第 T 步结束,也就是双方都无法落子,搜索值降低到阈值以下的时候。随后,进行计分,得出奖励 rT ∈ {−1,+1}。


每一个时间步长 t 的数据都被存储为 (st, πt, zt),其中 zt = ± rT 就是从当前这步棋 t 看来最终获胜的赢家。


同时(参见图1 b),使用从最后一次自我对弈迭代的所有时间步长中获取的数据  (s, π, z),对新的网络参数 θi 进行训练。调整神经网络 (p, v) = fθi (s),将预测值 v 和自我对比胜者 z 之间的误差降低到最小,同时将神经网络落子概率 p 和搜索概率 π 之间的相似度提升到最大。


具体说,我们用损失函数 l 的梯度下降来调节参数 θ,这个损失函数表示如下,其中 c 是控制 L2 权重正则化水平的参数(防止过拟合):




评估结果:21天就比战胜柯洁的Master更加厉害



DeepMind官方博客上介绍了AlphaGo Zero与此前版本的对比。完全从零开始,3天超越AlphaGo李世石版本,21天达到Master水平。


几个不同版本的计算力对比如下:



论文中,为了分开结构和算法的贡献,DeepMind研究人员还比较了 AlphaGo Zero 的神经网络架构和先前与李世乭对弈时的 AlphaGo (记为 AlphaGo Lee)的神经网络架构的性能(见图4)。


我们构建了4个神经网络,分别是在 AlphaGo Lee 中使用的分开的策略网络和价值网络,或者在 AlphaGo Zero 中使用的合并的策略和价值网络;以及 AlphaGo Lee 使用的卷积网络架构,或 AlphaGo Zero 使用的残差网络架构。每个网络都被训练以最小化同一个损失函数(公式1),训练使用的是 AlphaGo Zero 在72小时的自我对弈之后产生的同一个自我对弈棋局数据集。


使用残差网络的准确率更高,误差更低,在 AlphaGo 达到600 Elo(等级分)的性能提高。将策略(policy)和价值(value)结合到一个单一的网络中的话,走子预测的准确性略微降低了,但是价值错误也降低了,并且将 AlphaGo 的性能再提高了600 Elo。这在一定程度上是由于提高了计算效率,但更重要的是,双目标使网络成为支持多个用例的常规表示。


图4:AlphaGo Zero 和 AlphaGo Lee 的神经网络架构比较。使用分开的策略和价值网络记为(sep),使用组合的策略和价值网络记为(dual),使用卷积网络记为(conv),使用残差网络记为(res)。“dual-res”和“sep-conv”分别表示在 AlphaGo Zero 和 AlphaGo Lee 中使用的神经网络架构。每个网络都在同一个数据集上训练,该数据集由 AlphaGo Zero 的自我对弈产生。a,每个训练好的网络都与 AlphaGo Zero 的搜索相结合,以得到一个不同的玩家。Elo等级分是由这些不同玩家之间的评估游戏计算得到的,每一步棋有5秒的思考时间。b,对每个网络架构的职业棋手的走法(从GoKifu数据集得来)的预测准确性。c,每个网络架构的人类职业棋手的棋局结果(从GoKifu数据集得来)的MSE。


AlphaGo Zero学到的知识。a,AlphaGo Zero训练期间发现的五个人类定式(常见的角落序列)。b)自我对弈中爱用的5个定式。c)在不同训练阶段进行的3次自我对弈的前80步棋,每次搜索使用1,600次模拟(约0.4s)。最开始,系统关注夺子,很像人类初学者。而后,关注势和地,也即围棋根本。最后,整场比赛体现出了很好的平衡,涉及多次战斗和一场复杂的战斗,最终以白棋多半子获胜。



AlphaGo 小传



姓名:AlphaGo(Fan,Lee,Master,Zero)

别名:阿老师,阿尔法狗

生日:2014年

出生地:英国伦敦



1

击败樊麾

2015年10月,AlphaGo击败樊麾,成为第一个无需让子即可在19路棋盘上击败围棋职业棋手的电脑围棋程序,写下了历史,相关成果在2016年1月发表于Nature

2

击败李世石

2016年3月,AlphaGo在一场五番棋比赛中4:1击败尖端职业棋手李世石,成为第一个不借助让子而击败围棋职业九段棋手的电脑围棋程序,再创历史。五局赛后韩国棋院授予AlphaGo有史以来第一位名誉职业九段

3

排名短暂超越柯洁

2016年7月18日,AlphaGo在Go Ratings网站的排名升至世界第一。但几天之后被柯洁反超。

4

化名“Master”横扫棋界

2016年底至2017年年初,再度强化的AlphaGo以“Master”为名,在未公开其真实身份的情况下,借非正式的网络快棋对战进行测试,挑战中韩日台的一流高手,60战全胜

5

战胜柯洁,成为世界第一

2017年5月23至27日乌镇围棋峰会,最新的强化版AlphaGo和世界第一棋手柯洁对局,并配合八段棋手协同作战与对决五位顶尖九段棋手等五场比赛,获取3比零全胜的战绩,团队战与组队战也全胜。这次AlphaGo的运算资源消耗仅李世石版本的十分之一。在与柯洁的比赛结束后,中国围棋协会授予AlphaGo职业围棋九段的称号


AlphaGo在没有人类对手后,2017年5月25日,AlphaGo之父杰米斯·哈萨比斯宣布AlphaGo退役。AlphaGo的研究计划于2014年开始,从业余棋手的水平到世界第一,AlphaGo的棋力获取这样的进步,仅仅花了两年左右。


AlphaGo虽已退休,但技术永存。


谨以此文,致敬AlphaGo,以及研发AlphaGo的人。




人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链






长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市、“智能驾驶”新模式:“财富空间、“数据科学家”、“赛博物理”、“供应链金融”


官方网站:AI-CPS.NET




本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





登录查看更多
4

相关内容

AlphaGo Zero是谷歌下属公司Deepmind的新版程序。从空白状态学起,在无任何人类输入的条件下,AlphaGo Zero能够迅速自学围棋,并以100:0的战绩击败“前辈”。 2017年10月19日凌晨,在国际学术期刊《自然》(Nature)上发表的一篇研究论文中,谷歌下属公司Deepmind报告新版程序AlphaGo Zero:从空白状态学起,在无任何人类输入的条件下,它能够迅速自学围棋,并以100:0的战绩击败“前辈”。Deepmind的论文一发表,TPU的销量就可能要大增了。其100:0战绩有“造”真嫌疑。
《强化学习》简介小册,24页pdf
专知会员服务
272+阅读 · 2020年4月19日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
【强化学习】深度强化学习初学者指南
专知会员服务
179+阅读 · 2019年12月14日
斯坦福&谷歌Jeff Dean最新Nature论文:医疗深度学习技术指南
零基础搞懂强化学习?这份视频攻略不算迟
AI研习社
6+阅读 · 2018年4月25日
一张图看懂AlphaGo Zero
AI前线
6+阅读 · 2017年11月17日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年11月13日
Arxiv
4+阅读 · 2018年10月31日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关VIP内容
《强化学习》简介小册,24页pdf
专知会员服务
272+阅读 · 2020年4月19日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
【强化学习】深度强化学习初学者指南
专知会员服务
179+阅读 · 2019年12月14日
斯坦福&谷歌Jeff Dean最新Nature论文:医疗深度学习技术指南
相关论文
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年11月13日
Arxiv
4+阅读 · 2018年10月31日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年3月16日
Top
微信扫码咨询专知VIP会员