【CVPR2021】在类别不平衡的数据上施展半监督学习

2021 年 3 月 29 日 专知


类不平衡数据的半监督学习虽然是一个现实的问题,但已经得到了研究。虽然现有的半监督学习(SSL)方法在少数类上表现不佳,但我们发现它们仍然在少数类上生成高精度的伪标签。通过利用这一特性,在这项工作中,我们提出了类再平衡自我训练(CReST),这是一个简单而有效的框架,用于改进现有的对类不平衡数据的SSL方法。CReST通过从一个未标记集中添加伪标记样本扩展了一个标记集,迭代地重新训练一个基线SSL模型,在该模型中,根据估计的类分布,从少数类中更频繁地选择伪标记样本。我们还提出了一种渐进式分布对齐,以适应调整CReST+的再平衡强度。我们展示了CReST和CReST+在各种类不平衡的数据集上改进了最先进的SSL算法,并始终优于其他流行的再平衡方法。


https://www.zhuanzhi.ai/paper/fdb3245caf8bded4d2ba340c2a9c64cc


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“CREST” 就可以获取【CVPR2021】在类别不平衡的数据上施展半监督学习》专知下载链接

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。当使用半监督学习时,将会要求尽量少的人员来从事工作,同时,又能够带来比较高的准确性,因此,半监督学习目前正越来越受到人们的重视。
专知会员服务
29+阅读 · 2021年5月20日
【CVPR2021】反事实的零次和开集识别
专知会员服务
25+阅读 · 2021年5月7日
【CVPR2021】多实例主动学习目标检测
专知会员服务
41+阅读 · 2021年4月18日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
专知会员服务
32+阅读 · 2021年3月7日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
专知会员服务
26+阅读 · 2021年3月5日
【CVPR2021】细粒度多标签分类
专知
44+阅读 · 2021年3月8日
Arxiv
3+阅读 · 2019年8月19日
Arxiv
4+阅读 · 2019年2月18日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年5月20日
【CVPR2021】反事实的零次和开集识别
专知会员服务
25+阅读 · 2021年5月7日
【CVPR2021】多实例主动学习目标检测
专知会员服务
41+阅读 · 2021年4月18日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
专知会员服务
32+阅读 · 2021年3月7日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
专知会员服务
26+阅读 · 2021年3月5日
Top
微信扫码咨询专知VIP会员