学界 | 神经网络碰上高斯过程,DeepMind连发两篇论文开启深度学习新方向

2018 年 7 月 6 日 机器之心

选自arXiv

机器之心编译

参与:思源、晓坤


神经网络目前是最强大的函数近似器,而高斯过程是另一种非常强大的近似方法。DeepMind 刚刚提出了两篇结合高斯过程与神经网络的研究,这种模型能获得神经网络训练上的高效性,与高斯过程在推断时的灵活性。DeepMind 分别称这两种模型为神经过程与条件神经过程,它们通过神经网络学习逼近随机过程,并能处理监督学习问题。


函数近似是机器学习众多问题的核心,而过去深度神经网络凭借其「万能近似」的属性在函数近似方面无与伦比。在高级层面,神经网络可以构成黑箱函数近似器,它会学习如何根据大量训练数据点来参数化单个函数。


除了使用神经网络这种参数化的方法逼近一个函数,我们还可以根据随机过程执行推断以进行函数回归。随机过程会从概率的角度选择目标函数的可能分布,因而也能通过样本采样逼近真实的目标函数,随机过程在强化学习与超参数搜索方面比较常用。随机过程中最常见的实例就是高斯过程(GP),这种模型与神经网络有着互补的属性:高斯过程不需要昂贵的训练阶段,并且可以直接根据一些观察值对潜在的真实函数进行推断,这使得这种方法在测试阶段有非常灵活的属性。


但是高斯过程也有着很多局限性,首先 GP 在计算上是非常昂贵的。在原始方程中,计算复杂度随数据点的数量增加成立方地增加,即使在当前最优的近似方法中,那也是成平方地增加。此外,可用的核函数通常在函数形式上受到很大的限制,并且需要额外的优化过程来确定最合适的核函数,其可以看作高斯过程的超参数。


而最近 DeepMind 连发两篇论文探讨结合神经网络与高斯过程的方法,他们首先在论文《Neural Processes》中探讨了使用神经网络学习逼近随机过程的方法,随后又在论文《Conditional Neural Processes》讨论了结合神经网络与高斯过程解决监督学习问题的端到端的方法。


在论文《Neural Processes》中,DeepMind 介绍了基于神经网络的形式化方法,以学习随机过程的近似,他们将这种方法称之为神经过程(NP)。NP 能展示 GP 的一些基本属性,即学习目标函数的一个分布以逼近真实函数,NP 能根据上下文观察值估计其预测的不确定性,并将一些工作负载从训练转移到测试的过程中,这使得模型拥有更高的灵活性。更重要的是,NP 以高效计算的方式生成预测。给定 n 个上下文点和 m 个目标点,使用已训练 NP 进行推断对应着深度网络中的前向传播过程,它的时间复杂度为 O(n+m) 而不是经典高斯过程所需要的 O((n+m)^3)。此外,模型可以直接通过数据学习隐式的核函数,从而克服很多函数设计上的限制。


在论文《Conditional Neural Processes》中,DeepMind 提出了一族模型,可用于解决监督学习问题,并提供了端到端的训练方法,其结合了神经网络和类似高斯过程的特征。DeepMind 称这族神经网络为条件神经过程(CNP),以表明它们在给定一系列观察数据时定义函数的条件分布。CNP 对观察数据的依赖由一个神经网络参数化,其在输入的置换排列下保持不变。该架构的测试时间复杂度为 O(n+m),其中 n、m 分别是观察样本数和目标数。


论文:Neural Processes



论文地址:https://arxiv.org/abs/1807.01622


摘要:神经网络是一类参数化函数,可以通过梯度下降来高精度地逼近标记数据集。另一方面,高斯过程(GP)是一种概率模型,其定义了可能函数的分布,并通过概率推理规则和数据来更新。GP 是概率性、数据高效和灵活的,然而它们的计算很昂贵,因而应用受限。我们引入了一类神经隐变量模型,称为神经过程(NP),其结合了两者的优点。和 GP 类似,NP 定义了函数的分布,可以快速适应新的观察数据,并可以评估预测的不确定性。类似神经网络,NP 在训练和评估过程中的计算是高效的,并且能学习将先验概率引入到数据中。我们在一系列学习任务上展示了 NP 的性能,包括回归和优化,并和相关文献的模型进行对比。


图 1:神经过程模型。(a)神经过程的图模型。x 和 y 对应着 y = f(x) 的数据,C 和 T 分别是上下文点和目标点的数量,而 z 表示全局隐变量。此外,灰色背景表示变量是已经观察到的。(b)为实现神经过程的计算图。圆圈里面的变量对应着这(a)中图模型的变量,方框里面的变量为 NP 的中间表征。而没有框的加粗字母分别表示以下计算模块:h 为编码器、a 为汇集器(aggregator)、g 为解码器。在该实现中,h 和 g 分别对应神经网络,而 a 对应均值函数。最后,实线描述了生成过程,而虚线描述了推断过程。



图 2:相关模型(a-c)和神经过程(d)的图模型。灰色阴影表示变量已被观察。C 代表上下文变量,T 代表目标变量(即给定 C 的预测变量)。



图 5:在 1-D 目标函数利用神经过程的 Thompson sampling。图中展示了五次迭代的优化过程。每个预测函数(蓝色)通过采样一个隐变量进行绘制,以上下文点数的增加为条件(黑色圆)。真实函数由一个黑色点线表示。红色三角形对应采样 NP 曲线的最小值的下一个评估点。下一次迭代中的红色圆对应该评估点及其真值,作为 NP 的下一个上下文点。


论文:Conditional Neural Processes



论文地址:https://arxiv.org/abs/1807.01613


摘要:深度神经网络在函数近似中表现优越,然而通常对每个新函数它们都需要从零开始学习。另一方面,贝叶斯方法,例如高斯过程(GP)利用了先验知识在测试时快速推理新函数的形状。不过 GP 的计算很昂贵,并且设计合适的先验可能很困难。在本文中我们提出了一族神经模型:条件神经过程(CNP),其结合了前述两者的优点。CNP 由随机过程例如高斯过程的灵活性所启发,但其结构是神经网络式的,并通过梯度下降来训练。CNP 仅观察了少量训练数据点之后就可以执行准确的预测,并能扩展到复杂函数和大规模数据集上。我们在一系列标准的机器学习任务(包括回归、分类和图像补全)上展示了该方法的性能和通用性。


图 1:条件神经过程。a)数据描述;b)传统监督深度学习模型的训练方式;c)本文提出的模型。


4. 实验结果


图 2:1-D 回归。用 5 个(左列)和 50 个(右列)上下文点(黑点)得到的 1-D 曲线(黑线)回归结果。前两行展示了 GP(红色)和 CNP(蓝色)进行回归的预测平均值和方差,它们只使用单个潜在核函数。最后一行展示了用交换核参数得到的 CNP 预测曲线。


图 3:在 MNIST 上的像素级图像回归。左:不同观察样本数下的图像回归的两个示例。研究者向模型提供了 1、40、200 和 728 个上下文点(顶行),并查询完整的图像。图中展示了每张图像在每个像素位置得到的平均值(中行)和方差(底行)。右:随着观察样本数的增加的模型准确率变化,其中两条曲线分别是随机(蓝色)或按最高方差(红色)选择像素。


图 4:在 CelebA 上的像素级图像补全。不同观察样本数下的 CelebA 图像回归的两个示例。研究者向模型提供 1、10、100 和 1000 个上下文点(顶行)并查询完整的图像。图中展示了每张图像在每个像素位置得到的平均值(中行)和方差(底行)。


表 1:在 Celeb A 数据集上随着上下文点的增加(10、100、1000)在图像补全任务上的所有图像像素的像素级均方误差。这些点或者是随机选择的,或者是按左下到右上的顺序选择的。在提供更少的上下文点的情况下,CNP 超越了 kNN 和 GP。此外,CNP 在点选择顺序排列的情况下也能表现良好,而 GP 和 kNN 在点顺序排列的时候表现变差很多。




本文为机器之心编译,转载请联系本公众号获得授权

✄------------------------------------------------

加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com

投稿或寻求报道:content@jiqizhixin.com

广告 & 商务合作:bd@jiqizhixin.com

登录查看更多
2

相关内容

高斯过程(Gaussian Process, GP)是概率论和数理统计中随机过程(stochastic process)的一种,是一系列服从正态分布的随机变量(random variable)在一指数集(index set)内的组合。 高斯过程中任意随机变量的线性组合都服从正态分布,每个有限维分布都是联合正态分布,且其本身在连续指数集上的概率密度函数即是所有随机变量的高斯测度,因此被视为联合正态分布的无限维广义延伸。高斯过程由其数学期望和协方差函数完全决定,并继承了正态分布的诸多性质
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
CMU博士论文:可微优化机器学习建模
专知会员服务
58+阅读 · 2019年10月26日
【综述】智能医疗综述,48页论文详述医学AI最新进展
专知会员服务
69+阅读 · 2019年9月1日
【强化学习】如何开启强化学习的大门?
产业智能官
13+阅读 · 2017年9月10日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
7+阅读 · 2018年11月6日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关论文
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
7+阅读 · 2018年11月6日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
8+阅读 · 2018年3月17日
Top
微信扫码咨询专知VIP会员