面试锦囊之面经分享系列,持续更新中
赶紧后台回复"面试"加入讨论组和大佬交流吧
结束秋招已经很长一段时间了,如今也已经入职一段时间了,应大佬邀请整理一下面经,回馈一下有志于从事算法工作的学弟学妹们,毕竟自己也是曾经站在巨人的肩膀上,得到一些帮助,受益匪浅。
笔者背景,C9硕,非科班,互联网领域公司投递的岗位主要是“机器学习”(数据挖掘、搜索广告推荐方向,偶尔也投递一下nlp方向,cv也懂一些),教育和金融领域的公司也投了几家(分别是竞赛教练和量化研究岗)。
因为秋招19年开始地特别早,所以投递的时间比较早,而且规划和定位比较明确(地点不想去的尽量不投(例如北京))。秋招一共面了14家左右大厂(只投递杭州、上海、深圳岗位),放弃了几家外企的面试。
「几点建议」:
华为云,直接在六月的时候被叫过去进行顶尖人才专场面试。
围绕简历,然后问了业务中大数据方面的解决方案有没有想法,中间问了些数据清洗及特征工程方面的问题,还穿插了很多模型压缩与实时流方面的问题,说到时进来做面向芯片的AI加速算法,普及了华为在这方面的前景与优势。
简历提问,然后介绍华为近些年取得的巨大成就,聊聊业务,人生,价值观以及兴趣爱好。
数据挖掘US
机器学习方向
暂时能记起来的就这些,还有些ov海康中兴啥的实在太久了,教育和金融公司的面经感兴趣的可以关注我公号(海边的拾遗者)进行交流,先更新这些,祝大家心想事成,多多加油!
「PS.应原作者要求,转载或引用本文内容请提前告知,谢谢!」
- END -
推荐阅读
斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用
太赞了!Springer面向公众开放电子书籍,附65本数学、编程、机器学习、深度学习、数据挖掘、数据科学等书籍链接及打包下载
数学之美中盛赞的 Michael Collins 教授,他的NLP课程要不要收藏?
模型压缩实践系列之——bert-of-theseus,一个非常亲民的bert压缩方法
关于AINLP
AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。