干货合集 | 机器学习类面试问题与思路总结(文末送经典书籍)

2018 年 10 月 19 日 七月在线实验室

面试干货来喽,小七给小伙伴们整理了下关于机器学习类面试问题和思路总结,觉得有用的亲们,可以先收藏起来喔,再慢慢看~


机器学习、大数据相关岗位根据业务的不同,岗位职责也有所不同,大致分为如下4个类别。



◆◆
岗位职责划分
◆◆


1、平台搭建类
数据计算平台搭建,基础算法实现,当然,要求支持大样本量、高维度数据,所以可能还需要底层开发、并行计算、分布式计算等方面的知识;

2、算法研究类
  - 文本挖掘,如领域知识图谱构建、垃圾短信过滤等;
  - 推荐,广告推荐、APP 推荐、题目推荐、新闻推荐等;
  - 排序,搜索结果排序、广告排序等;
  - 广告投放效果分析;
  - 互联网信用评价;
  - 图像识别、理解。

3、数据挖掘类
  - 商业智能,如统计报表;
  - 用户体验分析,预测流失用户。

以上是根据求职季有限的接触所做的总结。有的应用方向比较成熟,业界有足够的技术积累,比如搜索、推荐,也有的方向还有很多开放性问题等待探索,比如互联网金融、互联网教育。在面试的过程中,一方面要尽力向企业展现自己的能力,另一方面也是在增进对行业发展现状与未来趋势的理解,特别是可以从一些刚起步的企业和团队那里,了解到一些有价值的一手问题。
 

以下首先介绍面试中遇到的一些真实问题,然后谈一谈答题和面试准备上的建议



◆◆
面试问题
◆◆


1、你在研究/项目/实习经历中主要用过哪些机器学习/数据挖掘的算法?


2、你熟悉的机器学习/数据挖掘算法主要有哪些?


3、你用过哪些机器学习/数据挖掘工具或框架?


4、基础知识
 1)无监督和有监督算法的区别?
 2)SVM 的推导,特性?多分类怎么处理?
 3)LR 的推导,特性?
 4)决策树的特性?
 5)SVM、LR、决策树的对比?
 6)GBDT 和 决策森林 的区别?
 7)如何判断函数凸或非凸?
 8)解释对偶的概念。
 9)如何进行特征选择?
 10)为什么会产生过拟合,有哪些方法可以预防或克服过拟合?
 11)介绍卷积神经网络,和 DBN 有什么区别?
 12)采用 EM 算法求解的模型有哪些,为什么不用牛顿法或梯度下降法?
 13)用 EM 算法推导解释 Kmeans。
 14)用过哪些聚类算法,解释密度聚类算法。
 15)聚类算法中的距离度量有哪些?
 16)如何进行实体识别?
 17)解释贝叶斯公式和朴素贝叶斯分类。
 18)写一个 Hadoop 版本的 wordcount。
  ……


5、开放问题
 1)给你公司内部群组的聊天记录,怎样区分出主管和员工?
 2)如何评估网站内容的真实性(针对代刷、作弊类)?
 3)深度学习在推荐系统上可能有怎样的发挥?
 4)路段平均车速反映了路况,在道路上布控采集车辆速度,如何对路况做出合理估计?采集数据中的异常值如何处理?
 5)如何根据语料计算两个词词义的相似度?
 6)在百度贴吧里发布 APP 广告,问推荐策略?
 7)如何判断自己实现的 LR、Kmeans 算法是否正确?
 8)100亿数字,怎么统计前100大的?
  ……



◆◆
答题思路
◆◆



1、用过什么算法?
最好是在项目/实习的大数据场景里用过,比如推荐里用过 CF、LR,分类里用过 SVM、GBDT;


一般用法是什么,是不是自己实现的,有什么比较知名的实现,使用过程中踩过哪些坑;
优缺点分析。


2、熟悉的算法有哪些?
基础算法要多说,其它算法要挑熟悉程度高的说,不光列举算法,也适当说说应用场合;


面试官和你的研究方向可能不匹配,不过在基础算法上你们还是有很多共同语言的,你说得太高大上可能效果并不好,一方面面试官还是要问基础的,另一方面一旦面试官突发奇想让你给他讲解高大上的内容,而你只是泛泛的了解,那就傻叉了。


3、用过哪些框架/算法包?
主流的分布式框架如 Hadoop,Spark,Graphlab,Parameter Server 等择一或多使用了解;


通用算法包,如 mahout,scikit,weka 等;


专用算法包,如 opencv,theano,torch7,ICTCLAS 等。


4、基础知识
个人感觉高频话题是 SVM、LR、决策树(决策森林)和聚类算法,要重点准备;

算法要从以下几个方面来掌握:
1)产生背景,适用场合(数据规模,特征维度,是否有 Online 算法,离散/连续特征处理等角度);
2)原理推导(最大间隔,软间隔,对偶);
3)求解方法(随机梯度下降、拟牛顿法等优化算法);
4)优缺点,相关改进;
5)和其他基本方法的对比;
6)不能停留在能看懂的程度,还要对知识进行结构化整理,比如撰写自己的 cheet sheet,我觉得面试是在有限时间内向面试官输出自己知识的过程,如果仅仅是在面试现场才开始调动知识、组织表达,总还是不如系统的梳理准备;
7)从面试官的角度多问自己一些问题,通过查找资料总结出全面的解答,比如如何预防或克服过拟合。

5、开放问题
由于问题具有综合性和开放性,所以不仅仅考察对算法的了解,还需要足够的实战经验作基础;


先不要考虑完善性或可实现性,调动你的一切知识储备和经验储备去设计,有多少说多少,想到什么说什么,方案都是在你和面试官讨论的过程里逐步完善的,不过面试官有两种风格:引导你思考考虑不周之处 or 指责你没有考虑到某些情况,遇到后者的话还请注意灵活调整答题策略;

和同学朋友开展讨论,可以从上一节列出的问题开始。



◆◆
准备建议
◆◆


1、基础算法复习两条线
  材料阅读 包括经典教材(比如 PRML,模式分类)、网上系列博客(比如 研究者July的“结构之法,算法之道”),系统梳理基础算法知识;(文末免费送书)


面试反馈 面试过程中会让你发现自己的薄弱环节和知识盲区,把这些问题记录下来,在下一次面试前搞懂搞透。

2、除算法知识,还应适当掌握一些系统架构方面的知识,可以从网上分享的阿里、京东、新浪微博等的架构介绍 PPT 入手,也可以从 Hadoop、Spark 等的设计实现切入。

3、如果真的是以就业为导向就要在平时注意实战经验的积累,在科研项目、实习、比赛(Kaggle,Netflix,天猫大数据竞赛等)中摸清算法特性、熟悉相关工具与模块的使用。



◆◆
总结
◆◆


如今,好多机器学习、数据挖掘的知识都逐渐成为常识,要想在竞争中脱颖而出,就必须做到:

  • 保持学习热情,关心热点;

  • 深入学习,会用,也要理解;

  • 在实战中历练总结;

  • 积极参加学术界、业界的讲座分享,向牛人学习,与他人讨论。

  • 最后,希望自己的求职经验总结能给大家带来有益的启发。

     文章来源于网络,如有侵权请联系我们




今日送书福利

【车专】发此条推送至朋友圈

并【关注】微信公众号

七月在线实验室


我们将在

10月25日18:00

抽取7位粉丝

包邮送出一本程序员面试的经典书籍

编程之法:面试和算法心得

为保证公平公正

本次抽奖完全依靠第三方小程序进行


参与方式:

1.关注“七月在线实验室”公众号;

2.【车专】发此条推送到朋友圈,并至少保留至开奖之后,开奖之后会审核哦;

3.向公众号后台回复:面试,收到抽奖海报;

4.扫码抽奖,然后等待开奖就可以啦!

今日学习推荐

机器学习集训营第六期

仅剩7个报名名额

10月22日开课(下周一)

倒计时三天

三个月挑战年薪四十万,甚至拿更高薪~

我们【机器学习集训营第四期】学员,更是拿到了高薪offer,和大家分享一下他们的面试经验和学习心得(戳下方直接获取):

 邱同学“人称offer收割机”,45万offer

→ 汪同学,本科应届双非院校,20万offer

→ 赵同学,高薪offer,薪资翻倍涨


报名更是优惠多多喔,报名即送两门辅助课程《机器学习工程师 第八期》、《深度学习 第三期》,更好的助力您学习机器学习。且两人及两人以上组团还能各减500元,想组团/咨询者可添加微信号:julyedukefu_02

长按识别二维码


更多资讯

戳一戳


往期推荐

如何交付机器学习项目:一份机器学习工程开发流程指南

程序员吐槽自己阿里p7面试微软被拒,网友:你就是高级一点的码农

值得探索的 8 个机器学习 JavaScript 框架

伤不起的三十岁,干不动的程序员要何去何从?

【Github 6K星】BAT头条滴滴小米等名企AI工程师笔经面经 + 算法/机器学习/深度学习/NLP资源汇总


拼团,咨询,查看课程,请点击阅读原文

↓ ↓ ↓ 

登录查看更多
16

相关内容

面试是招聘、招生等的一个常见程序,指通过面谈来了解并评估应试者,来确定是否符合要求。
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
356+阅读 · 2020年2月15日
【新书】Pro 机器学习算法Python实现,379页pdf
专知会员服务
199+阅读 · 2020年2月11日
【机器学习课程】机器学习中的常识性问题
专知会员服务
74+阅读 · 2019年12月2日
【必修】16个机器学习算法推导及项目案例 XGBoost | GBDT ......
BAT机器学习面试题1000题(331~335题)
七月在线实验室
12+阅读 · 2018年8月13日
深度学习面试100题(第81-85题)
七月在线实验室
16+阅读 · 2018年8月6日
深度学习面试100题(第76-80题)
七月在线实验室
6+阅读 · 2018年8月3日
干货 | 一文总结机器学习类面试问题与思路
THU数据派
3+阅读 · 2018年7月15日
第二章 机器学习中的数学基础
Datartisan数据工匠
12+阅读 · 2018年4月5日
手把手带你玩转机器学习和深度学习
大数据技术
8+阅读 · 2018年1月3日
干货 | 从零开始入门机器学习算法实践
雷锋网
9+阅读 · 2017年11月30日
干货 | 机器学习算法大总结(ML岗面试常考)
机器学习算法与Python学习
6+阅读 · 2017年8月1日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关VIP内容
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
356+阅读 · 2020年2月15日
【新书】Pro 机器学习算法Python实现,379页pdf
专知会员服务
199+阅读 · 2020年2月11日
【机器学习课程】机器学习中的常识性问题
专知会员服务
74+阅读 · 2019年12月2日
相关资讯
【必修】16个机器学习算法推导及项目案例 XGBoost | GBDT ......
BAT机器学习面试题1000题(331~335题)
七月在线实验室
12+阅读 · 2018年8月13日
深度学习面试100题(第81-85题)
七月在线实验室
16+阅读 · 2018年8月6日
深度学习面试100题(第76-80题)
七月在线实验室
6+阅读 · 2018年8月3日
干货 | 一文总结机器学习类面试问题与思路
THU数据派
3+阅读 · 2018年7月15日
第二章 机器学习中的数学基础
Datartisan数据工匠
12+阅读 · 2018年4月5日
手把手带你玩转机器学习和深度学习
大数据技术
8+阅读 · 2018年1月3日
干货 | 从零开始入门机器学习算法实践
雷锋网
9+阅读 · 2017年11月30日
干货 | 机器学习算法大总结(ML岗面试常考)
机器学习算法与Python学习
6+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员