总结 | 这里有关于GAN学习资源的一切(论文、应用、课程、书籍……)

2019 年 7 月 15 日 THU数据派

来源:新智元

本文约2600字,建议阅读10分钟。

本文为你整理了关于GAN的一切知识。


[ 导读 ]想了解关于GAN的一切?已经有人帮你整理好了!从论文资源、到应用实例,再到书籍、教程和入门指引,不管是新人还是老手,都能有所收获。


本文是一篇关于GAN开源资源的一篇分类汇总贴。全文共分为论文、应用、课程、书籍和入门指南五个部分,比较硬核的论文和应用实例部分放在前面,课程、入门指导等内容则放在文末。


无论是对于初学者还是老手,相信本文的内容都会对你有所帮助。对于论文和应用部分,一般先给出论文链接,然后给出GitHub软件资源。


第一部分:论文及GAN的分类




本节所列为与GAN相关的一些核心论文。首先是提出并创建GAN的基本概念的基本论文。然后逐次分类介绍GAN的一些常见变体的论文。


GAN (VanillaGAN)


  • Generative Adversarial Nets

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

https://github.com/goodfeli/adversarial


  • Energy-Based Generative Adversarial Network  

https://arxiv.org/pdf/1609.03126v2.pdf

https://github.com/buriburisuri/ebgan


  • Which Training Methods for GANs do Actually Converge

https://arxiv.org/pdf/1801.04406.pdf

https://github.com/LMescheder/GAN_stability


条件GAN  (CGAN)


  • Conditional generative adversarial nets

https://arxiv.org/abs/1411.1784

https://github.com/zhangqianhui/Conditional-GAN


  • Photo-realistic single image super-resolution using a GAN

https://arxiv.org/pdf/1609.04802.pdf

https://github.com/tensorlayer/srgan


  • Image-to-Image Translation with Conditional Adversarial Networks

https://arxiv.org/abs/1611.07004

https://github.com/phillipi/pix2pix


  • Generative Visual Manipulation on the Natural Image Manifold

https://arxiv.org/abs/1609.03552

https://github.com/junyanz/iGAN


拉普拉斯金字塔对抗网络 (LAPGAN)


  • Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf

https://github.com/witnessai/LAPGAN


深度卷积GAN (DCGAN)


  • Deep Convolutional Generative Adversarial Networks

http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf

https://github.com/witnessai/LAPGAN


  • Generative Adversarial Text to Image Synthesis

https://arxiv.org/pdf/1605.05396.pdf

https://github.com/reedscot/icml2016


对抗性自动编码器 (AAE)


  • Adversarial Autoencoders

https://arxiv.org/abs/1511.05644

https://github.com/Naresh1318/Adversarial_Autoencoder


生成递归对抗网络 (GRAN)


  • Generating images with recurrent adversarial networks

https://arxiv.org/abs/1602.05110

https://github.com/jiwoongim/GRAN


信息最大化GAN  (InfoGAN)


  • Infogan: Information maximizing GANs

http://papers.nips.cc/paper/6399-infogan-interpretable-representation

https://github.com/openai/InfoGAN


第二部分:应用实例



关于GAN的理论与训练


  • Energy-based generative adversarial network

https://arxiv.org/pdf/1609.03126v2.pdf

https://github.com/buriburisuri/ebgan


  • Which Training Methods for GANs do actually Converge

https://arxiv.org/pdf/1801.04406.pdf

https://github.com/LMescheder/GAN_stability


  • Improved Techniques for Training GANs

https://arxiv.org/abs/1609.04468

https://github.com/openai/improved-gan


  • Towards Principled Methods for Training Generative Adversarial Networks

https://arxiv.org/abs/1701.04862


  • Least Squares Generative Adversarial Networks

https://arxiv.org/abs/1611.04076

https://github.com/pfnet-research/chainer-LSGAN


  • Wasserstein GAN

https://arxiv.org/abs/1701.07875

https://github.com/martinarjovsky/WassersteinGAN


  • Improved Training of Wasserstein GANs

https://arxiv.org/abs/1704.00028

https://github.com/igul222/improved_wgan_training


  • Generalization and Equilibrium in Generative Adversarial Nets

https://arxiv.org/abs/1703.00573


  • GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium

http://papers.nips.cc/paper/7240-gans-trained-by-a-two-t

https://github.com/bioinf-jku/TTUR


图像解析


  • Generative Adversarial Text to Image Synthesis

https://arxiv.org/abs/1605.05396

https://github.com/reedscot/icml201


  • Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space

https://arxiv.org/abs/1612.00005v1

https://github.com/Evolving-AI-Lab/ppgn


  • Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

https://arxiv.org/abs/1511.06434

https://github.com/jacobgil/keras-dcgan


  • Progressive Growing of GANs for Improved Quality, Stability, and Variation

http://research.nvidia.com/publication/2017-10_Progressive-Growing-of

https://github.com/tkarras/progressive_growing_of_gans


  • StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

https://arxiv.org/pdf/1612.03242v1.pdf

https://github.com/hanzhanggit/StackGAN


  • Self-Attention Generative Adversarial Networks

https://arxiv.org/abs/1805.08318

https://github.com/heykeetae/Self-Attention-GAN


  • Large Scale GAN Training for High Fidelity Natural Image Synthesis

https://arxiv.org/abs/1809.11096


图-图转换


  • Image-to-image translation using conditional adversarial nets

https://arxiv.org/pdf/1611.07004v1.pdf

https://github.com/phillipi/pix2pix


  • Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

https://arxiv.org/abs/1703.05192

https://github.com/carpedm20/DiscoGAN-pytorch


  • Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

https://junyanz.github.io/CycleGAN/

https://github.com/junyanz/CycleGAN


  • CoGAN: Coupled Generative Adversarial Networks

https://arxiv.org/abs/1606.07536

https://github.com/andrewliao11/CoGAN-tensorflow


  • Unsupervised Image-to-Image Translation Networks

https://arxiv.org/abs/1703.00848


  • High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

https://arxiv.org/abs/1711.11585


  • UNIT: UNsupervised Image-to-image Translation Networks

https://arxiv.org/abs/1703.00848

https://github.com/mingyuliutw/UNIT


  • Multimodal Unsupervised Image-to-Image Translation

https://arxiv.org/abs/1804.04732

https://github.com/nvlabs/MUNIt


超解析度


  • Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

https://arxiv.org/abs/1609.04802

https://github.com/leehomyc/Photo-Realistic-Super-Resoluton


  • High-Quality Face Image Super-Resolution Using Conditional Generative Adversarial Networks

https://arxiv.org/pdf/1707.00737.pdf


  • Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network

https://arxiv.org/pdf/1811.00344.pdf

https://github.com/subeeshvasu/2018_subeesh_epsr_eccvw


文本-图像转换


  • TAC-GAN – Text Conditioned Auxiliary Classifier Generative Adversarial Network

https://arxiv.org/pdf/1703.06412.pdf

https://github.com/dashayushman/TAC-GAN


  • Generative Adversarial Text to Image Synthesis

https://arxiv.org/pdf/1605.05396.pdf

https://github.com/paarthneekhara/text-to-imag


  • Learning What and Where to Draw

http://www.scottreed.info/files/nips2016.pdf

https://github.com/reedscot/nips2016


图片编辑


  • Invertible Conditional GANs for image editing

https://arxiv.org/pdf/1611.06355.pdf

https://github.com/Guim3/IcGAN


  • Image De-raining Using a Conditional Generative Adversarial Network

https://arxiv.org/abs/1701.05957

https://github.com/hezhangsprinter/ID-CGAN


其他应用


  • Generating multi-label discrete patient records using generative adversarial networks

https://arxiv.org/abs/1703.06490

https://github.com/mp2893/medgan


  • Adversarial Generation of Natural Language

https://arxiv.org/abs/1705.10929


  • Language Generation with Recurrent Generative Adversarial Networks without Pre-training

https://arxiv.org/abs/1706.01399

https://github.com/amirbar/rnn.wgan


  • Adversarial ranking for language generation

http://papers.nips.cc/paper/6908-adversarial-ranking-for-language-generation

https://github.com/desire2020/RankGAN


  • Adversarial Training Methods for Semi-Supervised Text Classification

https://arxiv.org/abs/1605.07725

https://github.com/aonotas/adversarial_text


第三部分:课程



  • Deep Learning: GANs and Variational Autoencoders by Udemy:

https://www.udemy.com/deep-learning-gans-and-variational-autoencoders/


Differentiable Inference and Generative Models by the University of


  • Toronto:

http://www.cs.toronto.edu/~duvenaud/courses/csc2541/


  • Learning Generative Adversarial Networks by Udemy:

https://www.udemy.com/learning-generative-adversarial-networks/


第四部分:参考书籍



  • GANs in Action – Deep learning with Generative Adversarial Networks by manning Publications: 


https://www.manning.com/books/gans-in-action


第五部分:一些入门指南


  • GANs from Scratch 1: A deep introduction

https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f


  • Keep Calm and train a GAN. Pitfalls and Tips on training Generative Adversarial Networks:

https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adversarial-networks-edd529764aa9


  • CVPR 2018 Tutorial on GANs: 

https://sites.google.com/view/cvpr2018tutorialongans/


  • Introductory guide to Generative Adversarial Networks (GANs) and their promise!: 

https://www.analyticsvidhya.com/blog/2017/06/introductory-generative-adversarial-networks-gans/


  • Generative Adversarial Networks for beginners: 

https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners


  • Understanding and building Generative Adversarial Networks(GANs): 

https://becominghuman.ai/understanding-and-building-generative-adversarial-networks-gans-8de7c1dc0e25


参考链接:

https://machinelearningmindset.com/generative-adversarial-networks-roadmap/


编辑:王菁

校对:林亦霖

登录查看更多
5

相关内容

GAN:生成性对抗网,深度学习模型的一种,在神经网络模型中引入竞争机制,非常流行。
【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
108+阅读 · 2020年6月27日
还在修改博士论文?这份《博士论文写作技巧》为你指南
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
【资源】机器学习资源大列表
专知
58+阅读 · 2019年10月16日
GAN学习路线图:论文、应用、课程、书籍大总结
全球人工智能
16+阅读 · 2019年7月8日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
必读!TOP10生成对抗网络GAN论文(附链接)
数据派THU
16+阅读 · 2019年3月24日
GAN 生成对抗网络论文阅读路线图
专知
6+阅读 · 2018年10月30日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
12+阅读 · 2018年5月14日
历史最全GAN网络及其各种变体整理(附论文及代码实现)
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Seeing What a GAN Cannot Generate
Arxiv
8+阅读 · 2019年10月24日
VIP会员
相关资讯
【资源】机器学习资源大列表
专知
58+阅读 · 2019年10月16日
GAN学习路线图:论文、应用、课程、书籍大总结
全球人工智能
16+阅读 · 2019年7月8日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
必读!TOP10生成对抗网络GAN论文(附链接)
数据派THU
16+阅读 · 2019年3月24日
GAN 生成对抗网络论文阅读路线图
专知
6+阅读 · 2018年10月30日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
12+阅读 · 2018年5月14日
历史最全GAN网络及其各种变体整理(附论文及代码实现)
Top
微信扫码咨询专知VIP会员