[CVPR 2020 Oral-牛津] RandLA-Net:大场景三维点云语义分割新框架

2020 年 3 月 15 日 专知

研究了大规模三维点云的有效语义分割问题。通过依赖昂贵的采样技术或繁重的计算预处理/后处理步骤,大多数现有的方法只能在小规模点云上进行训练和操作。在这篇文章中,我们介绍了一种高效的轻量级神经结构——RandLA-Net,它可以直接推断大规模点云的每点语义。我们的方法的关键是使用随机点抽样而不是更复杂的点选择方法。虽然随机抽样具有很高的计算效率和内存效率,但它也会随机地丢弃一些关键特性。为了克服这个问题,我们引入了一个新的局部特征聚合模块,逐步增加每个3D点的接受域,从而有效地保留几何细节。大量实验表明,我们的RandLA-Net单次可以处理100万个点,速度比现有方法快200倍。此外,我们的RandLA-Net在语义分割的两个大规模基准上明显超过了最先进的方法Semantic3D和SemanticKITTI。


地址:

https://www.zhuanzhi.ai/paper/7ce59d7cd75be8fe1c7a44ea0bfdae00



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“RandLA” 就可以获取[CVPR 2020 Oral-牛津] RandLA-Net:大场景三维点云语义分割新框架》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
85+阅读 · 2020年6月9日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
28+阅读 · 2020年5月25日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
27+阅读 · 2020年4月1日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
【资源】元学习论文分类列表推荐
专知
19+阅读 · 2019年12月3日
【CVPR2019教程】视频理解中的图表示学习
专知
43+阅读 · 2019年6月20日
用于RGB-D室内场景语义分割的门式融合局部感知反卷积网络
机器学习研究会
7+阅读 · 2017年10月30日
Arxiv
6+阅读 · 2019年4月4日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
Top
微信扫码咨询专知VIP会员