题目:A Unifying View on Individual Bounds and Heuristic Inaccuracies in Bidirectional Search作者:Vidal Alcazar、Pat Riddle、Mike Barley机构:Riken 高级智能项目中心(Center for Advanced Intelligence Project)、奥克兰大学论文链接:https://ai.dmi.unibas.ch/research/reading_group/alcazar-et-al-aaai2020.pdf 摘要:过去几年,新的双向启发式搜索算法取得了很多成功。这些算法的创新之处在于,它们降低了从 g 个值中双向获取信息的成本。Kaindl and Kainz (1997) 、Sadhukhan (2013) 等都为这一领域做出了共吸纳,但仍有一些问题没有解决。本文中,研究者在相关领域进行了更多的扩展。 AAAI 2020 最佳学生论文奖 本届大会的最佳学生论文奖由南洋理工大学、清华大学和香港大学的研究者获得。 题目:Fair Division of Mixed Divisible and Indivisible Goods作者:Xiaohui Bei, Zihao Li, Jinyan Liu, Shengxin Liu, Xinhang Lu机构:南洋理工大学、清华大学、香港大学论文链接:https://arxiv.org/pdf/1911.07048.pdf
摘要:本文究了当资源包含可分割商品及不可分割商品时的公平分配问题。比如,无嫉妒性(envy-freeness,EF)及无嫉妒性最多可用于单一商品(envy-freeness up to one good, EF1)这种经典公平问题概念,是无法直接应用于混合商品的分配问题中。而在此次研究中提出了一个新的公平概率-混合商品的无嫉妒性(envy-freeness for mixed goods, EFM),而它是 EF 和 EF1 针对混合商品集合的直接通用化结果。 研究者证明了对于任意数量的代理(agents)而言,EFM 的分配始终存在。他们还提出了一个有效算法去计算两个代理和 n 个代理的 EFM 分配问题,并且对可分割商品进行分段化的线性评估。最后,研究者放松了对无嫉妒性的要求,改为针对混合商品的ǫ-无嫉妒性(ǫ-EFM),以及提出了一种算法,使其在一定的代理数量、一定的不可分割商品数量和的 1 /ǫ的情况下,找到时间多项式的ǫ-EFM 分配。 算法 1:EFM 算法。 最佳学生论文奖提名颁给了来自马萨诸塞大学阿默斯特分校和 Adobe Research 的研究者。 题目:Lifelong Learning with a Changing Action Set作者:Yash Chandak、Georgios Theocharous、Chris Nota、Philip S. Thomas机构:马萨诸塞大学阿默斯特分校、Adobe Research论文链接:https://arxiv.org/abs/1906.01770 摘要:在现实世界诸多的序列决策(sequential decision)问题中,可用操作(决策)的数量会随时间而变化。尽管终身学习的相关研究已经对灾难性遗忘、改变转移动态以及变化奖励函数等问题进行了相关研究,但操作集(action set)发生变化的环境仍未得到解决。因此,研究者在本文中提出了一种算法,该算法可以自动适应一个大小随时间变化的操作集。为了解决这个开放的问题,他们将其划分为两个可以迭代解决的步骤:在操作空间中推断底层的未知结构;对利用这种结构的策略进行优化。研究者证明了这种方法在现实世界大规模的终身学习问题上的有效性。 图 :推荐系统领域中终身学习随操作集变化的实验。学习曲线对应每种算法最佳性能设置时的运行平均值。阴影部分对应 10 次实验获得的标准差。垂直曲线表示更改操作集的时间。 此外,本届大会还设有特别的杰出论文奖,用于鼓励那些使用 AI 而带来社会影响的研究。本次获奖的论文是关于地震预警的,获奖研究者来自雷恩大学、罗格斯大学和俄勒冈大学。 题目:A Distributed Multi-Sensor Machine Learning Approach to Earthquake Early Warning作者:Kévin Fauvel等机构:雷恩大学、罗格斯大学、俄勒冈大学论文链接:https://hal.archives-ouvertes.fr/hal-02373429v2/document 摘要:本项研究旨在通过机器学习提供地震预警系统(EEW)的准确性。此系统的设计核心目的为针对于中大型地震,在破坏性影响到达特定区域前探测出来。传统的 EEW 方法是基于地震检波器的,但由于传统方法对地震运动速度敏感性的问题,导致不能准确地识别大地震。而另一方面,由于引进的高精度 GPS 站点对其产生的噪音数据会有倾向性,也无法准确识别中等强度的地震。此外,全球定位系统站点和地震仪可能会在不同的地点进行大量部署,产生大量的数据,从而影响响应的时间以及 EEW 系统的稳定性。 在实践中,EEW 可以看作成机器学习领域中一个典型的分类问题:多传感器的数据为输入,地震的强烈程度为分类的输出结果。本文介绍了一种基于机器学习的分布式多传感器地震预警系统(DMSEEW),该系统结合了两种传感器(GPS 站台和地震仪)的数据进行探测。DMSEEW 是基于一种新的堆栈集成的方式,该方法已在实际的数据集中经过地理科学家们的验证。该系统是基于地理层面分布式的基础设施,以确保在响应时间和鲁棒程度下,即使有部分基础设施故障时依然保持高效计算性。实验结果表明,DMSEEW 方法与传统的地震预测方法和采用相对强度的组合传感器(GPS 和地震仪)方法相比,具有更高的精确度。 分布式多传感地震预警算法(DMSSEW) 其他奖项 本届 AAAI 大会还颁发了蓝天创意奖、杰出教育家奖以及罗伯特·S·恩格尔莫尔纪念奖等奖项。 2020 蓝天创意奖 蓝天创意奖用来鼓励哪些能够激发学界探索新方法、新思路的研究工作。本次获奖的论文有三篇: 第一名:Back to the Future for Dialogue Research作者:Philip R. Cohen 第二名:AI for Explaining Decisions in Multi-Agent Environments作者:Sarit Kraus 等 第三名:Unveil- ing Hidden Intentions作者:Gerardo Ocampo Diaz 和 Vincent Ng 2020 AAAI/EAAI 杰出教育家奖 AAAI /EAAI 杰出教育家奖的设立旨在表彰那些对 AI 教育做出重要贡献以及对 AI 社区产生深远影响的个人或团体。该奖项由 AAAI 大会和人工智能教育进展研讨会(Symposium on Educational Advances in Artificial Intelligence)联合赞助。 本届 AAAI/EAAI 杰出教育家奖授予了美国西蒙斯大学管理、计算和信息科学学(College of Organizational, Computational, and Information Sciences)院院长 Marie desJardins,以表彰其在培养和认可人工智能教育进展、分享教学进步、提升教学多样化以及增强 K-12 CS 师资储备方面对 AI 社区做出的重大贡献。 Marie desJardins 博士。 2020 罗伯特·S·恩格尔莫尔纪念奖 Robert S. Engelmore 纪念奖由 IAAI-20 和 AI Magzine 组织赞助。这一奖项设立于 2003 年,用来纪念恩格尔莫尔博士对 AAAI、AI Magzine 和整个社区的贡献。 2020 年的奖项颁发给了罗切斯特大学的 Henry Kautz 教授,以嘉奖他在知识表示、数据分析和社交媒体上的数据挖掘方面的杰出贡献。 Henry Kautz 教授是罗切斯特大学计算机科学家,数据科学研究所创始主任。他曾任 AT&T 贝尔实验室研究者和华盛顿大学教授。 Henry Kautz 教授的研究主要包括数据挖掘、数据分析、概率推理等,曾于 2010 年当选 AAAI 协会主席。