[1]Lim B, Son S, Kim H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]. Computer Vision and Pattern Recognition Workshops, 2017: 1132-1140.
[2]Dong C, Loy C C, Tang X. Accelerating the super-resolution convolutional neural network[C]. European Conference on Computer Vision, 2016: 391-407.
[3]Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(2): 295-307.
[4]Shi W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883.
[5]Kim J, Kwon Lee J, Mu Lee K. Accurate image super-resolution using very deep convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
[6]Hui Z, Wang X, Gao X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network[J], 2018.
[7]Huang G, Liu Z, Weinberger K Q, et al. Densely connected convolutional networks[J]. arXiv preprint arXiv:1608.06993, 2016.
[8]Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[9]Kato Y, Deguchi D, Takahashi T, et al. Low Resolution QR-Code Recognition by Applying Super-Resolution Using the Property of QR-Codes[C]. International Conference on Document Analysis and Recognition, 2011: 992-996.
[10]Svoboda P, Hradis M, Barina D, et al. Compression Artifacts Removal Using Convolutional Neural Networks[J]. Journal of Wscg, 2016, 24(2): 63-72.
[11]Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network[J]. Computer Science, 2015, 14(7): 38-39.