【直观详解】什么是PCA、SVD

2017 年 11 月 10 日 机器学习研究会

【直观详解】什么是PCA、SVD

在说明一个解释型内容的过程中,我一直坚信,带有思考的重复的是获取的知识的唯一捷径,所以会加入很多括号的内容,即另一种说法(从不同角度或其他称呼等),这样有助于理解。加粗的地方我也认为是比较重要的关键字或者逻辑推导,学习有一个途径就是划重点,做笔记。


1
What & Why PCA (主成分分析)


PCA,Principal components analyses,主成分分析。广泛应用于降维,有损数据压缩,特征提取和数据可视化。也被称为Karhunen-Loeve变换

降维的方法角度来看,有两种PCA的定义方式,这里需要有一个直观的理解:什么是变换(线性代数基础),想整理一下自己线性代数的可以移步我的另一篇文章:【直观详解】线性代数的本质

但是总的来说,PCA的核心目的是寻找一个方向(找到这个方向意味着二维中的点可以被压缩到一条直线上,即降维),这个方向可以:

  • 最大化正交投影后数据的方差(让数据在经过变换后更加分散


  • 最小化投影造成的损失(下图中所有红线(投影造成的损失)加起来最小)



转自:机器学习算法与自然语言处理


完整内容请点击“阅读原文”

登录查看更多
4

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
264+阅读 · 2020年6月10日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
《深度学习》圣经花书的数学推导、原理与Python代码实现
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
354+阅读 · 2020年2月15日
【电子书】让 PM 全面理解深度学习 65页PDF免费下载
专知会员服务
17+阅读 · 2019年10月30日
可解释推荐:综述与新视角
专知会员服务
110+阅读 · 2019年10月13日
一步步教你轻松学主成分分析PCA降维算法
【收藏】支持向量机原理详解+案例+代码!【点击阅读原文下载】
机器学习算法与Python学习
10+阅读 · 2018年9月13日
【机器学习理论】我所理解的 SVM(支持向量机)- 1
机器学习研究会
5+阅读 · 2018年3月16日
机器学习(30)之线性判别分析(LDA)原理详解
机器学习算法与Python学习
11+阅读 · 2017年12月6日
机器学习(29)之奇异值分解SVD原理与应用详解
机器学习算法与Python学习
4+阅读 · 2017年11月30日
机器学习(27)【降维】之主成分分析(PCA)详解
机器学习算法与Python学习
9+阅读 · 2017年11月22日
【直观详解】支持向量机SVM
机器学习研究会
18+阅读 · 2017年11月8日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关VIP内容
相关资讯
一步步教你轻松学主成分分析PCA降维算法
【收藏】支持向量机原理详解+案例+代码!【点击阅读原文下载】
机器学习算法与Python学习
10+阅读 · 2018年9月13日
【机器学习理论】我所理解的 SVM(支持向量机)- 1
机器学习研究会
5+阅读 · 2018年3月16日
机器学习(30)之线性判别分析(LDA)原理详解
机器学习算法与Python学习
11+阅读 · 2017年12月6日
机器学习(29)之奇异值分解SVD原理与应用详解
机器学习算法与Python学习
4+阅读 · 2017年11月30日
机器学习(27)【降维】之主成分分析(PCA)详解
机器学习算法与Python学习
9+阅读 · 2017年11月22日
【直观详解】支持向量机SVM
机器学习研究会
18+阅读 · 2017年11月8日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
Top
微信扫码咨询专知VIP会员