【直观详解】什么是PCA、SVD
在说明一个解释型内容的过程中,我一直坚信,带有思考的重复的是获取的知识的唯一捷径,所以会加入很多括号的内容,即另一种说法(从不同角度或其他称呼等),这样有助于理解。加粗的地方我也认为是比较重要的关键字或者逻辑推导,学习有一个途径就是划重点,做笔记。
PCA,Principal components analyses,主成分分析。广泛应用于降维,有损数据压缩,特征提取和数据可视化。也被称为Karhunen-Loeve变换
从降维的方法角度来看,有两种PCA的定义方式,这里需要有一个直观的理解:什么是变换(线性代数基础),想整理一下自己线性代数的可以移步我的另一篇文章:【直观详解】线性代数的本质
但是总的来说,PCA的核心目的是寻找一个方向(找到这个方向意味着二维中的点可以被压缩到一条直线上,即降维),这个方向可以:
最大化正交投影后数据的方差(让数据在经过变换后更加分散)
最小化投影造成的损失(下图中所有红线(投影造成的损失)加起来最小)
转自:机器学习算法与自然语言处理
完整内容请点击“阅读原文”