干货|如何轻松愉快的理解条件随机场(CRF)?

2017 年 8 月 2 日 机器学习研究会

如何轻松愉快的理解条件随机场(CRF)?

理解条件随机场最好的办法就是用一个现实的例子来说明它。


但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧。


于是乎,我翻译了这篇文章。希望对其他伙伴有所帮助。
原文在这里[http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/]


想直接看英文的朋友可以直接点进去了。我在翻译时并没有拘泥于原文,许多地方都加入了自己的理解,用学术点的话说就是意译。(画外音:装什么装,快点开始吧。)好的,下面开始翻译!


假设你有许多小明同学一天内不同时段的照片,从小明提裤子起床到脱裤子睡觉各个时间段都有(小明是照片控!)。


现在的任务是对这些照片进行分类。比如有的照片是吃饭,那就给它打上吃饭的标签;有的照片是跑步时拍的,那就打上跑步的标签;有的照片是开会时拍的,那就打上开会的标签。问题来了,你准备怎么干?


一个简单直观的办法就是,不管这些照片之间的时间顺序,想办法训练出一个多元分类器。就是用一些打好标签的照片作为训练数据,训练出一个模型,直接根据照片的特征来分类。


例如,如果照片是早上6:00拍的,且画面是黑暗的,那就给它打上睡觉的标签;如果照片上有车,那就给它打上开车的标签。


这样可行吗?


乍一看可以!但实际上,由于我们忽略了这些照片之间的时间顺序这一重要信息,我们的分类器会有缺陷的。


举个例子,假如有一张小明闭着嘴的照片,怎么分类?显然难以直接判断,需要参考闭嘴之前的照片,如果之前的照片显示小明在吃饭,那这个闭嘴的照片很可能是小明在咀嚼食物准备下咽,可以给它打上吃饭的标签;如果之前的照片显示小明在唱歌,那这个闭嘴的照片很可能是小明唱歌瞬间的抓拍,可以给它打上唱歌的标签。


所以,为了让我们的分类器能够有更好的表现,在为一张照片分类时,我们必须将与它相邻的照片的标签信息考虑进来。


这——就是条件随机场(CRF)大显身手的地方!


转自:机器学习算法与自然语言处理

登录查看更多
26

相关内容

条件随机域(场)(conditional random fields,简称 CRF,或CRFs),是一种判别式概率模型,是随机场的一种,常用于标注或分析序列资料,如自然语言文字或是生物序列。 如同马尔可夫随机场,条件随机场为具有无向的图模型,图中的顶点代表随机变量,顶点间的连线代表随机变量间的相依关系,在条件随机场中,随机变量 Y 的分布为条件机率,给定的观察值则为随机变量 X。原则上,条件随机场的图模型布局是可以任意给定的,一般常用的布局是链结式的架构,链结式架构不论在训练(training)、推论(inference)、或是解码(decoding)上,都存在效率较高的算法可供演算。
【硬核课】统计学习理论,321页ppt
专知会员服务
138+阅读 · 2020年6月30日
【2020新书】从Excel中学习数据挖掘,223页pdf
专知会员服务
90+阅读 · 2020年6月28日
少标签数据学习,54页ppt
专知会员服务
198+阅读 · 2020年5月22日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
机器学习速查手册,135页pdf
专知会员服务
341+阅读 · 2020年3月15日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
简明条件随机场CRF介绍 | 附带纯Keras实现
PaperWeekly
23+阅读 · 2018年5月22日
基础 | 一文轻松搞懂-条件随机场CRF
黑龙江大学自然语言处理实验室
16+阅读 · 2018年3月24日
【干货】深入理解变分自编码器
专知
21+阅读 · 2018年3月22日
理解神经网络的激活函数
论智
7+阅读 · 2018年1月8日
干货|带你愉快的理解CRF
机器学习研究会
32+阅读 · 2017年11月27日
干货|10分钟快速入门PyTorch (7) 词向量
机器学习研究会
8+阅读 · 2017年9月26日
从点到线:逻辑回归到条件随机场
夕小瑶的卖萌屋
15+阅读 · 2017年7月22日
从逻辑回归到最大熵模型
夕小瑶的卖萌屋
4+阅读 · 2017年7月11日
Equalization Loss for Long-Tailed Object Recognition
Arxiv
5+阅读 · 2020年4月14日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年5月10日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
【硬核课】统计学习理论,321页ppt
专知会员服务
138+阅读 · 2020年6月30日
【2020新书】从Excel中学习数据挖掘,223页pdf
专知会员服务
90+阅读 · 2020年6月28日
少标签数据学习,54页ppt
专知会员服务
198+阅读 · 2020年5月22日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
机器学习速查手册,135页pdf
专知会员服务
341+阅读 · 2020年3月15日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
相关资讯
简明条件随机场CRF介绍 | 附带纯Keras实现
PaperWeekly
23+阅读 · 2018年5月22日
基础 | 一文轻松搞懂-条件随机场CRF
黑龙江大学自然语言处理实验室
16+阅读 · 2018年3月24日
【干货】深入理解变分自编码器
专知
21+阅读 · 2018年3月22日
理解神经网络的激活函数
论智
7+阅读 · 2018年1月8日
干货|带你愉快的理解CRF
机器学习研究会
32+阅读 · 2017年11月27日
干货|10分钟快速入门PyTorch (7) 词向量
机器学习研究会
8+阅读 · 2017年9月26日
从点到线:逻辑回归到条件随机场
夕小瑶的卖萌屋
15+阅读 · 2017年7月22日
从逻辑回归到最大熵模型
夕小瑶的卖萌屋
4+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员