【经典书】机器学习高斯过程,266页pdf,MIT出版社

2020 年 5 月 2 日 专知



高斯过程(GPs)为核机器的学习提供了一种有原则的、实用的、概率的方法。在过去的十年中,GPs在机器学习社区中得到了越来越多的关注,这本书提供了GPs在机器学习中理论和实践方面长期需要的系统和统一的处理。该书是全面和独立的,针对研究人员和学生在机器学习和应用统计学。


这本书处理监督学习问题的回归和分类,并包括详细的算法。提出了各种协方差(核)函数,并讨论了它们的性质。从贝叶斯和经典的角度讨论了模型选择。讨论了许多与其他著名技术的联系,包括支持向量机、神经网络、正则化网络、相关向量机等。讨论了包括学习曲线和PAC-Bayesian框架在内的理论问题,并讨论了几种用于大数据集学习的近似方法。这本书包含说明性的例子和练习,和代码和数据集在网上是可得到的。附录提供了数学背景和高斯马尔可夫过程的讨论。


http://www.gaussianprocess.org/gpml/



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“GP266” 就可以获取【经典书】机器学习高斯过程,266页pdf,MIT出版社》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

高斯过程(Gaussian Process, GP)是概率论和数理统计中随机过程(stochastic process)的一种,是一系列服从正态分布的随机变量(random variable)在一指数集(index set)内的组合。 高斯过程中任意随机变量的线性组合都服从正态分布,每个有限维分布都是联合正态分布,且其本身在连续指数集上的概率密度函数即是所有随机变量的高斯测度,因此被视为联合正态分布的无限维广义延伸。高斯过程由其数学期望和协方差函数完全决定,并继承了正态分布的诸多性质
【经典书】人工智能及机器学习导论,457页pdf
专知会员服务
160+阅读 · 2020年7月5日
【2020新书】监督机器学习,156页pdf,剑桥大学出版社
专知会员服务
151+阅读 · 2020年6月27日
【硬核书】不完全信息决策理论,467页pdf
专知会员服务
351+阅读 · 2020年6月24日
【经典书】机器学习:贝叶斯和优化方法,1075页pdf
专知会员服务
404+阅读 · 2020年6月8日
【干货书】用于概率、统计和机器学习的Python,288页pdf
专知会员服务
287+阅读 · 2020年6月3日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
228+阅读 · 2020年5月2日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
【新书】Python中的经典计算机科学问题,224页pdf
专知会员服务
144+阅读 · 2019年12月28日
经典书《斯坦福大学-多智能体系统》532页pdf
Arxiv
15+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2019年4月4日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
6+阅读 · 2018年4月3日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
Top
微信扫码咨询专知VIP会员