KDD22教程 | 如何用图神经网络做工业级推荐系统(161页ppt)

2022 年 8 月 19 日 图与推荐



推荐系统是现代消费者网络应用程序的基本组成部分,它试图预测用户的偏好,以更好地服务于相关商品。因此,作为推荐系统输入的高质量用户和项目表示对于个性化推荐至关重要。为了构造这些用户和项目表示,自监督图嵌入已经成为一种原则性的方法,用于嵌入关系数据,如用户社交图、用户成员关系图、用户-项目参与关系图和其他异构图。在本教程中,我们讨论了自监督图嵌入的不同方法家族。在每个家族,我们概述了各种技术,他们的优点和缺点,并阐述最新的工作。最后,我们演示了如何在现代工业规模的深度学习推荐系统中有效地利用由此产生的大型嵌入表来提高候选对象的检索和排名。
https://ahelk.github.io/talks/kdd22.html
  1. Introduction and Motivation

  2. Homogenous Graph Embeddings

  3. Heterogeneous Graph Embeddings

  4. Graph Neural Networks

  5. Recommender System Applications




登录查看更多
0

相关内容

【SIGIR2021】自然语言处理图深度学习,230页ppt
专知会员服务
95+阅读 · 2021年7月23日
专知会员服务
59+阅读 · 2021年4月29日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
KDD2022 | 基于图表示的推荐算法教程
机器学习与推荐算法
0+阅读 · 2022年8月17日
【CIKM2021-Tutorial】图挖掘公平性,166页ppt
专知
1+阅读 · 2021年11月5日
KDD2021 | 图表示学习系统教程 (附Slides)
机器学习与推荐算法
3+阅读 · 2021年9月7日
【WWW2018】网络表示学习Tutorial(附下载)
专知
11+阅读 · 2018年4月25日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月25日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关资讯
相关基金
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员