台湾大学台大林轩田老师的全套《机器学习基石》教程用中文讲解,赶紧收藏:
1.1 The Learning Problem - Course Introduction
https://www.bilibili.com/video/av12463015/#page=1
1.2 The Learning Problem - What Is Machine Learning
https://www.bilibili.com/video/av12463015/#page=2
1.3 The Learning Problem - Applications of Machine Learning
https://www.bilibili.com/video/av12463015/#page=3
1.4 The Learning Problem - Components of Learning
https://www.bilibili.com/video/av12463015/#page=4
1.5 The Learning Problem - Machine Learning and Other Fields
https://www.bilibili.com/video/av12463015/#page=5
2.1 Learning to Answer Yes_No - Perceptron Hypothesis Set
https://www.bilibili.com/video/av12463015/#page=6
2.2 Learning to Answer Yes_No - Perceptron Learning Algorithm
https://www.bilibili.com/video/av12463015/#page=7
2.3 Learning to Answer Yes_No - Guarantee of PLA
https://www.bilibili.com/video/av12463015/#page=8
2.4 Learning to Answer Yes_No - Non-Separable Data
https://www.bilibili.com/video/av12463015/#page=9
3.1 Types of Learning - Learning with Different Output Space
https://www.bilibili.com/video/av12463015/#page=20
3.2 Types of Learning - Learning with Different Data Label
https://www.bilibili.com/video/av12463015/#page=11
3.3 Types of Learning - Learning with Different Protocol
https://www.bilibili.com/video/av12463015/#page=12
3.4 Types of Learning - Learning with Different Input Space
https://www.bilibili.com/video/av12463015/#page=13
4.1 Feasibility of Learning - Learning is Impossible
https://www.bilibili.com/video/av12463015/#page=14
4.2 Feasibility of Learning - Probability to the Rescue
https://www.bilibili.com/video/av12463015/#page=15
4.3 Feasibility of Learning - Connection to Learning
https://www.bilibili.com/video/av12463015/#page=16
4.4 Feasibility of Learning - Connection to Real Learning
https://www.bilibili.com/video/av12463015/#page=17
5.1 Training versus Testing - Recap and Preview
https://www.bilibili.com/video/av12463015/#page=18
5.2 Training versus Testing - Effective Number of Lines
https://www.bilibili.com/video/av12463015/#page=19
5.3 Training versus Testing - Effective Number of Hypotheses
https://www.bilibili.com/video/av12463015/#page=20
5.4 Training versus Testing - Break Point
https://www.bilibili.com/video/av12463015/#page=21
6.1 Theory of Generalization - Restriction of Break Point
https://www.bilibili.com/video/av12463015/#page=22
6.2 Theory of Generalization - Bounding Function - Basic Cases
https://www.bilibili.com/video/av12463015/#page=23
6.3 Theory of Generalization - Bounding Function - Inductive
https://www.bilibili.com/video/av12463015/#page=24
6.4 Theory of Generalization - A Pictorial Proof
https://www.bilibili.com/video/av12463015/#page=25
7.1 The VC Dimension - Definition of VC Dimension
https://www.bilibili.com/video/av12463015/#page=26
7.2 The VC Dimension - VC Dimension of Perceptrons
https://www.bilibili.com/video/av12463015/#page=27
7.3 The VC Dimension - Physical Intuition of VC Dimension
https://www.bilibili.com/video/av12463015/#page=28
7.4 The VC Dimension - Interpreting VC Dimension
https://www.bilibili.com/video/av12463015/#page=29
8.1 Noise and Error - Noise and Probabilistic Target
https://www.bilibili.com/video/av12463015/#page=20
8.2 Noise and Error - Error Measure
https://www.bilibili.com/video/av12463015/#page=31
8.3 Noise and Error - Algorithmic Error Measure
https://www.bilibili.com/video/av12463015/#page=32
8.4 Noise and Error - Weighted Classification
https://www.bilibili.com/video/av12463015/#page=33
9.1 Linear Regression - Linear Regression Problem
https://www.bilibili.com/video/av12463015/#page=34
9.2 Linear Regression - Linear Regression Algorithm
https://www.bilibili.com/video/av12463015/#page=35
9.3 Linear Regression - Generalization Issue
https://www.bilibili.com/video/av12463015/#page=36
9.4 Linear Regression - for Binary Classification
https://www.bilibili.com/video/av12463015/#page=37
10.1 Logistic Regression - Logistic Regression Problem
https://www.bilibili.com/video/av12463015/#page=38
10.2 Logistic Regression - Logistic Regression Error
https://www.bilibili.com/video/av12463015/#page=39
10.3 Logistic Regression - Gradient of Logistic Regression Error
https://www.bilibili.com/video/av12463015/#page=40
10.4 Logistic Regression - Gradient Descent
https://www.bilibili.com/video/av12463015/#page=41
11.1 Linear Models for Classification - Binary Classification
https://www.bilibili.com/video/av12463015/#page=42
11.2 Linear Models for Classification - Stochastic Grad. Descent
https://www.bilibili.com/video/av12463015/#page=43
11.3 Linear Models for Classification - Multiclass via Logistic
https://www.bilibili.com/video/av12463015/#page=44
11.4 Linear Models for Classification - Multiclass via Binary
https://www.bilibili.com/video/av12463015/#page=45
12.1 Nonlinear Transformation - Quadratic Hypotheses
https://www.bilibili.com/video/av12463015/#page=46
12.2 Nonlinear Transformation - Nonlinear Transform
https://www.bilibili.com/video/av12463015/#page=47
12.3 Nonlinear Transformation - Price of Nonlinear Transform
https://www.bilibili.com/video/av12463015/#page=48
12.4 Nonlinear Transformation - Structured Hypothesis Sets
https://www.bilibili.com/video/av12463015/#page=49
13.1 Hazard of Overfitting - What is Overfitting
https://www.bilibili.com/video/av12463015/#page=50
13.2 Hazard of Overfitting - The Role of Noise and Data Size
https://www.bilibili.com/video/av12463015/#page=51
13.3 Hazard of Overfitting - Deterministic Noise
https://www.bilibili.com/video/av12463015/#page=52
13.4 Hazard of Overfitting - Dealing with Overfitting
https://www.bilibili.com/video/av12463015/#page=53
14.1 Regularization - Regularized Hypothesis Set
https://www.bilibili.com/video/av12463015/#page=54
14.2 Regularization - Weight Decay Regularization
https://www.bilibili.com/video/av12463015/#page=55
14.3 Regularization - Regularization and VC Theory
https://www.bilibili.com/video/av12463015/#page=56
14.4 Regularization - General Regularizers
https://www.bilibili.com/video/av12463015/#page=57
15.1 Validation - Model Selection Problem
https://www.bilibili.com/video/av12463015/#page=58
15.2 Validation - Validation
https://www.bilibili.com/video/av12463015/#page=59
15.3 Validation - Leave-One-Out Cross Validation
https://www.bilibili.com/video/av12463015/#page=60
15.4 Validation - V-Fold Cross Validation
https://www.bilibili.com/video/av12463015/#page=61
16.1 Three Learning Principles - Occam's Razor
https://www.bilibili.com/video/av12463015/#page=62
16.2 Three Learning Principles - Sampling Bias
https://www.bilibili.com/video/av12463015/#page=63
16.3 Three Learning Principles - Data Snooping
https://www.bilibili.com/video/av12463015/#page=64
16.4 Three Learning Principles - Power of Three
https://www.bilibili.com/video/av12463015/#page=65