30+个必知的《人工智能》会议清单

2020 年 1 月 14 日 深度强化学习实验室

深度强化学习实验室报道

来源:qianli8848

编辑:DeepRL


很多人都想问 “热门研究方向”、“最新方法”有哪些呢?。有同学建议国内某教授的教材、或者CNKI、或者某些SCI期刊。每当看到这种问题,我都有点纳闷,为什么不去读顶级会议上的论文? 并不是否认以上文献的价值,但是在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。国内教材和CNKI上的基本是N年前老掉牙的东西。为什么要发表顶级会议文章,读顶级会议文章呢?

  • 因为机器学习、计算机视觉和人工智能领域发展非常迅速,新的工作层出不穷,如果把论文投到期刊上,一两年后刊出时就有点out了。因此大部分最新的工作都首先发表在顶级会议上,这些顶级会议完全能反映“热门研究方向”、“最新方法”。

  • 很多经典工作大家可能引的是某顶级期刊上的论文,这是因为期刊论文表述得比较完整、实验充分。但实际上很多都是在顶级会议上首发。比如PLSA, Latent Dirichlet Allocation等。

  • 如果注意这些领域大牛的pulications,不难发现他们很非常看重这些顶级会议,很多人是80%的会议+20%的期刊。即然大牛们把最新工作发在顶级会议上,有什么理由不去读顶级会议?

下面对一些人工智能领域的顶级会议进行相关的简介:


第一层次

IJCAI (1+): International Joint Conference on Artificial Intelligence

影响因子:1.82 (top 4.09 %)
IJCAI是AI最好的综合性会议, 1969年开始, 每两年开一次, 奇数年开. 因为AI 实在太大, 所以虽然每届基本上能录100多篇(现在已经到200多篇了),但分到每个 领域就没几篇了,象achine learning、computer vision这么大的领域每次大概也 就10篇左右, 所以难度很大. 不过从录用率上来看倒不太低,基本上20%左右, 因为内 行人都会掂掂分量, 没希望的就别浪费reviewer的时间了. 最近中国大陆投往国际会 议的文章象潮水一样, 而且因为国内很少有能自己把关的研究组, 所以很多会议都在 complain说中国的低质量文章严重妨碍了PC的工作效率. 在这种情况下, 估计这几年 国际会议的录用率都会降下去. 另外, 以前的IJCAI是没有poster的, 03年开始, 为了 减少被误杀的好人, 增加了2页纸的poster.值得一提的是, IJCAI是由貌似一个公司 的”IJCAI Inc.”主办的(当然实际上并不是公司, 实际上是个基金会), 每次会议上要 发几个奖, 其中最重要的两个是IJCAI Research Excellence Award 和 Computer & Thoughts Award, 前者是终身成就奖, 每次一个人, 基本上是AI的最高奖(有趣的是, 以AI为主业拿图灵奖的6位中, 有2位还没得到这个奖), 后者是奖给35岁以下的 青年科学家, 每次一个人. 这两个奖的获奖演说是每次IJCAI的一个重头戏.另外, IJCAI 的 PC member 相当于其他会议的area chair, 权力很大, 因为是由PC member 去找 reviewer 来审, 而不象一般会议的PC member其实就是 reviewer. 为了制约 这种权力, IJCAI的审稿程序是每篇文章分配2位PC member, primary PC member去找3位reviewer, second PC member找一位.

AAAI(1): National Conference on Artificial Intelligence

影响因子:1.49 (top 9.17%)
AAAI是美国人工智能学会AAAI的年会. 是一个很好的会议, 但其档次不稳定, 可   以给到1+, 也可以给到1-或者2+, 总的来说我给它”1″. 这是因为它的开法完全受 IJCAI制约: 每年开, 但如果这一年的 IJCAI在北美举行, 那么就停开. 所以, 偶数年 里因为没有IJCAI, 它就是最好的AI综合性会议, 但因为号召力毕竟比IJCAI要小一些, 特别是欧洲人捧AAAI场的比IJCAI少得多(其实亚洲人也是), 所以比IJCAI还是要稍弱 一点, 基本上在1和1+之间; 在奇数年, 如果IJCAI不在北美, AAAI自然就变成了比   IJCAI低一级的会议(1-或2+), 例如2005年既有IJCAI又有AAAI, 两个会议就进行了协 调, 使得IJCAI的录用通知时间比AAAI的deadline早那么几天, 这样IJCAI落选的文章 可以投往AAAI.在审稿时IJCAI 的 PC chair也在一直催, 说大家一定要快, 因为AAAI 那边一直在担心IJCAI的录用通知出晚了AAAI就麻烦了.

COLT (1): Annual Conference on Computational Learning Theory

影响因子:1.49 (top 9.25%)
COLT是计算学习理论最好的会议, ACM主办, 每年举行. 计算学习理论基本上可以看成理论计算机科学和机器学习的交叉,   所以这个会被一些人看成是理论计算 机科学的会而不是AI的会. 我一个朋友用一句话对它进行了精彩的刻画: “一小群数 学家在开会”. 因为COLT的领域比较小, 所以每年会议基本上都是那些人. 这里顺便 提一件有趣的事, 因为最近国内搞的会议太多太滥, 而且很多会议都是LNCS/LNAI出 论文集, LNCS/LNAI基本上已经被搞臭了, 但很不幸的是, LNCS/LNAI中有一些很好的 会议

CVPR (1): IEEE International Conference on Computer Vision and Pattern   Recognition

影响因子:
CVPR是计算机视觉和模式识别方面最好的会议之一, IEEE主办, 每年举行. 虽然题 目上有计算机视觉, 但个人认为它的模式识别味道更重一些. 事实上它应该是模式识 别最好的会议, 而在计算机视觉方面, 还有ICCV 与之相当. IEEE一直有个倾向, 要把 会办成”盛会”, 历史上已经有些会被它从quality很好的会办成”盛会”了. CVPR搞不好 也要走这条路. 这几年录的文章已经不少了. 最近负责CVPR会议的TC的chair发信 说, 对这个community来说, 让好人被误杀比被坏人漏网更糟糕, 所以我们是不是要减 少好人被误杀的机会啊? 所以我估计明年或者后年的CVPR就要扩招了.

ICCV (1): IEEE International Conference on Computer Vision

影响因子:1.78 (top 4.75%)
ICCV 的全称是 IEEE International Conference on Computer Vision,即国际计算机视觉大会,由IEEE主办,与计算机视觉模式识别会议(CVPR)和欧洲计算机视觉会议(ECCV)并称计算机视觉方向的三大顶级会议,被澳大利亚ICT学术会议排名和中国计算机学会等机构评为最高级别学术会议,在业内具有极高的评价。不同于在美国每年召开一次的CVPR和只在欧洲召开的ECCV,ICCV在世界范围内每两年召开一次。ICCV论文录用率非常低,是三大会议中公认级别最高的。ICCV会议时间通常在四到五天,相关领域的专家将会展示最新的研究成果。

ICML (1): International Conference on Machine Learning

影响因子:2.12 (top 1.88%)
ICML是International Conference on Machine Learning的缩写,即国际机器学习大会。ICML如今已发展为由国际机器学习学会(IMLS)主办的年度机器学习国际顶级会议。每年举办一次,和NIPS,CVPR不相上下。

NIPS (1): Annual Conference on Neural Information Processing Systems

影响因子:1.06 (top 20.96%)
NIPS是神经计算方面最好的会议之一, NIPS主办, 每年举行. 值得注意的是, 这个会 每年的举办地都是一样的, 以前是美国丹佛, 现在是加拿大温哥华; 而且它是年底开会, 会开完后第2年才出论文集, 也就是说, NIPS’05的论文集是06年出. 会议的名字 “Advances in Neural Information Processing Systems”, 所以, 与ICML/ECML这样 的”标准的”机器学习会议不同, NIPS里有相当一部分神经科学的内容, 和机器学习有 一定的距离. 但由于会议的主体内容是机器学习, 或者说与机器学习关系紧密, 所以 不少人把NIPS看成是机器学习方面最好的会议之一. 这个会议基本上控制在Michael Jordan的徒子徒孙手中, 所以对Jordan系的人来说, 发NIPS并不是难事, 一些未必很 强的工作也能发上去, 但对这个圈子之外的人来说, 想发一篇实在很难, 因为留给”外 人”的口子很小. 所以对Jordan系以外的人来说, 发NIPS的难度比ICML更大. 换句话说, ICML比较开放, 小圈子的影响不象NIPS那么大, 所以北美和欧洲人都认, 而NIPS则有 些人(特别是一些欧洲人, 包括一些大家)坚决不投稿. 这对会议本身当然并不是好事,   但因为Jordan系很强大, 所以它似乎也不太care. 最近IMLS(国际机器学习学会)改选 理事, 有资格提名的人包括近三年在ICML/ECML/COLT发过文章的人, NIPS则被排除在 外了. 无论如何, 这是一个非常好的会.

ACL (1-): Annual Meeting of the Association for Computational Linguistics

影响因子:1.06 (top 20.96%)
ACL是计算语言学/自然语言处理方面最好的会议, ACL (Association of   Computational Linguistics) 主办, 每年开

KR (1-): International Conference on Principles of Knowledge Representation   and Reasoning

影响因子:1.06 (top 20.96%)
KR是知识表示和推理方面最好的会议之一, 实际上也是传统AI(即基于逻辑的AI) 最好的会议之一. KR Inc.主办, 现在是偶数年开.

SIGIR (1-): Annual International ACM SIGIR Conference on Research and Development in Information Retrieval

影响因子:1.06 (top 20.96%)
SIGIR是信息检索方面最好的会议, ACM主办, 每年开. 这个会现在小圈子气越来 越重. 信息检索应该不算AI, 不过因为这里面用到机器学习越来越多, 最近几年甚至 有点机器学习应用会议的味道了, 所以把它也列进来.

SIGKDD (1-): ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

影响因子:
SIGKDD是数据挖掘方面最好的会议, ACM主办, 每年开. 这个会议历史比较短,   毕竟, 与其他领域相比,数据挖掘还只是个小弟弟甚至小侄儿. 在几年前还很难把它列 在tier-1里面, 一方面是名声远不及其他的 top conference响亮, 另一方面是相对容易 被录用. 但现在它被列在tier-1应该是毫无疑问的事情了.

UAI (1-): International Conference on Uncertainty in Artificial Intelligence

影响因子:
UAI: 名字叫”人工智能中的不确定性”, 涉及表示/推理/学习等很多方面, AUAI   (Association of UAI) 主办, 每年开.

第二层次

AAMAS (2+): International Joint Conference on Autonomous Agents and   Multiagent Systems

影响因子:
AAMAS是agent方面最好的会议. 但是现在agent已经是一个一般性的概念,   几乎所有AI有关的会议上都有这方面的内容, 所以AAMAS下降的趋势非常明显.

ECCV (2+): European Conference on Computer Vision

影响因子:1.58 (top 7.20 %)
ECCV是计算机视觉方面仅次于ICCV的会议, 因为这个领域发展很快, 有可能升级到1-去.

ECML (2+): European Conference on Machine Learning

影响因子:0.83 (top 30.63 %)
ECML是机器学习方面仅次于ICML的会议, 欧洲人极力捧场, 一些人认为它已经是1-了. 我保守一点, 仍然把它放在2+. 因为机器学习发展很快, 这个会议的reputation上升非常明显.

ICDM (2+): IEEE International Conference on Data Mining

影响因子:0.35 (top 59.86 %)
ICDM是数据挖掘方面仅次于SIGKDD的会议, 目前和SDM相当. 这个会只有5年历史, 上升速度之快非常惊人. 几年前ICDM还比不上PAKDD, 现在已经拉开很大距离了.

SDM (2+): SIAM International Conference on Data Mining

影响因子:
SDM是数据挖掘方面仅次于SIGKDD的会议, 目前和ICDM相当. SIAM的底子很厚, 但在CS里面的影响比ACM和IEEE还是要小, SDM眼看着要被ICDM超过了, 但至少目前还是相当的.

ICAPS (2): International Conference on Automated Planning and Scheduling

影响因子:
ICAPS是人工智能规划方面最好的会议, 是由以前的国际和欧洲规划会议合并来的. 因为这个领域逐渐变冷清, 影响比以前已经小了.

ICCBR (2): International Conference on Case-Based Reasoning

影响因子:0.35 (top 59.86 %)
ICCBR是Case-Based Reasoning方面最好的会议. 因为领域不太大, 而且一直半冷不热, 所以总是停留在2上.

COLLING (2): International Conference on Computational Linguistics

影响因子:
COLLING是计算语言学/自然语言处理方面仅次于ACL的会, 但与ACL的差距比ICCV-ECCV和ICML-ECML大得多.

ECAI (2): European Conference on Artificial Intelligence

影响因子:0.69 (top 38.49 %)
ECAI是欧洲的人工智能综合型会议, 历史很久, 但因为有IJCAI/AAAI压着,很难往上升.

ALT (2-): International Conference on Algorithmic Learning Theory

影响因子:0.63 (top 42.91 %)
ALT有点象COLT的tier-2版, 但因为搞计算学习理论的人没多少, 做得好的数来数去就那么些group, 基本上到COLT去了, 所以ALT里面有不少并非计算学习理论的内容.

EMNLP (2-): Conference on Empirical Methods in Natural Language Processing

影响因子:
EMNLP是计算语言学/自然语言处理方面一个不错的会. 有些人认为与COLLING相当, 但我觉得它还是要弱一点.

ILP (2-): International Conference on Inductive Logic Programming

影响因子:0.63 (top 42.91 %)
ILP是归纳逻辑程序设计方面最好的会议. 但因为很多其他会议里都有ILP方面的内容, 所以它只能保住2-的位置了.

PKDD (2-): European Conference on Principles and Practice of Knowledge   Discovery in Databases

影响因子:0.63 (top 42.91 %)
PKDD是欧洲的数据挖掘会议, 目前在数据挖掘会议里面排第4. 欧洲人很想把它抬起来, 所以这些年一直和ECML一起捆绑着开, 希望能借ECML把它带起来.但因为ICDM和SDM, 这已经不太可能了. 所以今年的 PKDD和ECML虽然还是一起开, 但已经独立审稿了(以前是可以同时投两个会, 作者可以声明优先被哪个会考虑, 如果ECML中不了还可以被 PKDD接受).

第三层次

ACCV (3+): Asian Conference on Computer Vision

影响因子:0.42 (top 55.61%)
ACCV是亚洲的计算机视觉会议, 在亚太级别的会议里算很好的了.

ICTAI (3+): IEEE International Conference on Tools with Artificial Intelligence

影响因子:0.42 (top 55.61%)
ICTAI是IEEE最主要的人工智能会议, 偏应用, 是被IEEE办烂的一个典型. 以前的quality还是不错的, 但是办得越久声誉反倒越差了, 糟糕的是似乎还在继续下滑, 现在其实3+已经不太呆得住了.

**PAKDD (3+): Pacific-Asia Conference on Knowledge Discovery and Data Mining

影响因子:0.42 (top 55.61%)
PAKDD是亚太数据挖掘会议, 目前在数据挖掘会议里排第5.

注:部分第三层次会议知名度并不高,所以不进行一一列举。

以上给出的评分或等级都是个人意见, 仅供参考. 特别要说明的是: 综合建议

综合建议:

  1. 第一层次conference上的文章并不一定比第三层次的好, 只能说前者的平均水准更高.
  2. 研究工作的好坏不是以它发表在哪儿来决定的, 发表在高档次的地方只是为了让工作更容易被同行注意到. 第三层次会议上发表1篇被引用10次的文章可能比在第一层次会议上发表10篇被引用0次的文章更有价值. 所以, 数top会议文章数并没有太大意义, 重要的是同行的评价和认可程度.
  3. 很多经典工作并不是发表在高档次的发表源上, 有不少经典工作甚至是发表在很低档的发表源上. 原因很多, 就不细说了.
  4. 会议毕竟是会议, 由于审稿时间紧, 错杀好人和漏过坏人的情况比比皆是, 更何况还要考虑到有不少刚开始做研究的学生在代老板审稿.
  5. 会议的reputation并不是一成不变的,新会议可能一开始没什么声誉,但过几年后就野鸡变凤凰,老会议可能原来声誉很好,但越来越往下滑.
  6. 只有计算机科学才重视会议论文, 其他学科并不把会议当回事. 但在计算机科学中也有不太重视会议的分支.
  7. Politics无所不在. 你老板是谁, 你在哪个研究组, 你在哪个单位, 这些简单的因素都可能造成决定性的影响. 换言之, 不同环境的人发表的难度是不一样的. 了解到这一点后, 你可能会对high-level发表源上来自low-level单位名不见经传作者的文章特别注意(例如如果<计算机学报>上发表了平顶山铁 道电子信息科技学院的作者的文章,我一定会仔细读).
  8. 评价体系有巨大的影响. 不管是在哪儿谋生的学者, 都需要在一定程度上去迎合评价体系, 否则连生路都没有了, 还谈什么做研究. 以国内来说, 由于评价体系只重视journal, 有一些工作做得很出色的学者甚至从来不投会议. 另外, 经费也有巨大的制约作用. 国外很多好的研究组往往是重要会议都有文章. 但国内是不行的, 档次低一些的会议还可以投了只交注册费不开会, 档次高的会议不去做报告会有很大的负面影响, 所以只能投很少的会议. 这是在国内做CS研究最不利的地方. 我的一个猜想:人民币升值对国内CS研究会有不小的促进作用(当然, 人民币升值对整个中国来说利大于弊还是弊大于利很难说).

特别致谢:qianli8848(http://blog.sciencenet.cn/blog-722391-578333.html)


# 往期论文精彩回顾#

第40篇:AAAI-2020|| 52篇深度强化学习论文汇总

第39篇:DQN系列(2): Double DQN 算法原理与实现

第38篇:DQN系列(1): Double Q-learning

第37篇:从Paper到Coding, 一览DRL挑战34类游戏

第36篇:复现"深度强化学习"论文的经验之谈

第35篇:α-Rank算法之DeepMind及Huawei的改进

第34篇:DeepMind-102页深度强化学习PPT(2019)

第33篇:全网首发|| 最全深度强化学习资料(永久更新)

第32篇:腾讯AI Lab强化学习招聘(正式/实习)

第31篇:强化学习,路在何方?

第30篇:强化学习的三种范例

第29篇:框架ES-MAML:进化策略的元学习方法

第28篇:138页“策略优化”PPT--Pieter Abbeel

第27篇:迁移学习在强化学习中的应用及最新进展

第26篇:深入理解Hindsight Experience Replay

第25篇:10项【深度强化学习】赛事汇总

第24篇:DRL实验中到底需要多少个随机种子?

第23篇:142页"ICML会议"强化学习笔记

第22篇:通过深度强化学习实现通用量子控制

第21篇:《深度强化学习》面试题汇总

第20篇:《深度强化学习》招聘汇总(13家企业)

第19篇:解决反馈稀疏问题之HER原理与代码实现

第18篇:"DeepRacer" —顶级深度强化学习挑战赛

第17篇:AI Paper | 几个实用工具推荐

第16篇:AI领域:如何做优秀研究并写高水平论文?

第15篇: DeepMind开源三大新框架!
第14篇: 61篇NIPS2019深度强化学习论文及部分解读
第13篇: OpenSpiel(28种DRL环境+24种DRL算法)
第12篇: 模块化和快速原型设计的Huskarl DRL框架
第11篇: DRL在Unity自行车环境中配置与实践
第10篇: 解读72篇DeepMind深度强化学习论文
第9篇: 《AutoML》:一份自动化调参的指导
第8篇: ReinforceJS库(动态展示DP、TD、DQN)
第7篇: 10年NIPS顶会DRL论文(100多篇)汇总
第6篇: ICML2019-深度强化学习文章汇总
第5篇: 深度强化学习在阿里巴巴的技术演进
第4篇: 深度强化学习十大原则
第3篇: “超参数”自动化设置方法---DeepHyper
第2篇: 深度强化学习的加速方法
第1篇: 深入浅出解读"多巴胺(Dopamine)论文"、环境配置和实例分析


第12期论文:2020-1-10(6篇,Pieter, Sutton各一篇)

第11期论文:2019-12-19(3篇,OpenAI,Nvidia各一篇)

第10期论文:2019-12-13(8篇)

第9期论文:2019-12-3(3篇)

第8期论文:2019-11-18(5篇)

第7期论文:2019-11-15(6篇)

第6期论文:2019-11-08(2篇)

第5期论文:2019-11-07(5篇,一篇DeepMind发表)

第4期论文:2019-11-05(4篇)

第3期论文:2019-11-04(6篇)

第2期论文:2019-11-03(3篇)

第1期论文:2019-11-02(5篇)



登录查看更多
1

相关内容

IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
专知会员服务
43+阅读 · 2020年7月15日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
56+阅读 · 2020年2月25日
AAAI2020接受论文列表,1591篇论文目录全集
专知会员服务
98+阅读 · 2020年1月12日
周志华教授:如何做研究与写论文?
专知会员服务
153+阅读 · 2019年10月9日
重磅资料! | CVPR 2019 全部论文合集(1.37G)
AI研习社
3+阅读 · 2019年6月11日
2019版CCF推荐国际学术会议和期刊目录发布!AI领域七大A类会议,你认同吗?
黑龙江大学自然语言处理实验室
10+阅读 · 2019年5月1日
年度必读:2018最具突破性人工智能论文Top 10
新智元
5+阅读 · 2018年12月2日
资源 | 机器学习必知的15大框架,欢迎补充!
数据分析
19+阅读 · 2018年9月11日
2018 年,你可以把论文投给这 13 场 AI 学术会议(附截稿日期)
黑龙江大学自然语言处理实验室
4+阅读 · 2018年1月8日
【C4P推荐】人工智能领域顶级会议AAAI
Call4Papers
3+阅读 · 2017年9月6日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
35+阅读 · 2020年1月2日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关VIP内容
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
专知会员服务
43+阅读 · 2020年7月15日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
56+阅读 · 2020年2月25日
AAAI2020接受论文列表,1591篇论文目录全集
专知会员服务
98+阅读 · 2020年1月12日
周志华教授:如何做研究与写论文?
专知会员服务
153+阅读 · 2019年10月9日
相关资讯
重磅资料! | CVPR 2019 全部论文合集(1.37G)
AI研习社
3+阅读 · 2019年6月11日
2019版CCF推荐国际学术会议和期刊目录发布!AI领域七大A类会议,你认同吗?
黑龙江大学自然语言处理实验室
10+阅读 · 2019年5月1日
年度必读:2018最具突破性人工智能论文Top 10
新智元
5+阅读 · 2018年12月2日
资源 | 机器学习必知的15大框架,欢迎补充!
数据分析
19+阅读 · 2018年9月11日
2018 年,你可以把论文投给这 13 场 AI 学术会议(附截稿日期)
黑龙江大学自然语言处理实验室
4+阅读 · 2018年1月8日
【C4P推荐】人工智能领域顶级会议AAAI
Call4Papers
3+阅读 · 2017年9月6日
Top
微信扫码咨询专知VIP会员