信息与通信工程 | 顶级SCI期刊专刊信息1条

2019 年 9 月 16 日 Call4Papers


信息与通信工程

Mechanical Systems and Signal Processing

Special Issue on “Intelligent Techniques for Real-time Signal Processing and Mechanical Systems Diagnosis- New Directions, Challenges and Applications”

全文截稿: 2019-12-29
影响因子: 4.37
中科院JCR分区:
  • 大类 : 工程技术 - 2区
  • 小类 : 工程:机械 - 1区
网址: https://www.journals.elsevier.com/mechanical-systems-and-signal-processing
By monitoring the energy coming from mechanical systems (e.g., acoustics and vibration emission), it is possible to estimate not only actual condition but also future behavior of the machine. Problems involved on diagnosis via acoustics and vibration monitoring reside in time-varying nature of measured signals, complexity of the vibration pattern of defective mechanical components, interference of random signals and sources of acoustics and vibration emission, and so forth.

We are currently living through the fourth Industrial revolution, which is riding on the wave of cutting-edge technologies in computing, artificial intelligence, and communications. The past decade has witnessed incredible advances in the field of artificial intelligence (AI) and has seen massive proliferation of cloud computing technologies. These technological advances have further fueled the integration of the real-time cyber and the physical worlds, with intelligence and autonomy as its key hallmarks, which would lead to more reliable, productive, and efficient industries and businesses in the future.

Intelligent techniques applied on real-time machine condition monitoring can be classified into:

Preprocessing techniques (for signal conditioning, such as filtering and deconvolution techniques, genetic algorithms applications, etc.)

Feature extraction techniques (temporal and spectral analysis, envelope detection, higher-order statistical and cyclostationary processing, time-frequency analysis)

Condition classification techniques (artificial neural network applications, expert systems, fuzzy logic, etc.)

Spectral analysis emerges as the signal processing technique more used for machine fault detection. However, nonlinearity, and nonstationarity properties of acoustics and real-time vibration signal emitted by certain mechanical components, and the challenge of estimating low-magnitude signal properties at noise environments, have led to the application of advanced signal processing techniques such as time-frequency analysis, higher-order statistical processing, cyclostationary analysis.

Recognizing the growing importance of and interest in effective application of real-time signal processing techniques on machine diagnosis, Advances in Acoustics and Vibration will devote a special issue to innovative research papers in advanced acoustics and vibration analysis for machine condition monitoring.

For example, SCADA (Supervisory control and data acquisition) systems are network presence systems that face significant threats and attacks. After an attack occurred, SCADA requires forensic investigation to understand the cause and effects of the intrusion or disruption on the system’s services. However, forensic investigators cannot turn it off during acquiring the real-time data that is required for the investigation and analysis process. That is because the system’s services need to be continuously operational. Despite the great efforts to acquire live data on SCADA systems, the continuously change of this type of data and the risk on the system’s services make it a big challenge. Intelligent techniques for Real-time Signal Processing and Mechanical Systems Diagnosis are urgent in such cases to predict and prevent SCADA failures.

We invite researchers and practicing engineers to contribute original research articles that discuss issues related but not limited to:

Condition-based real-time monitoring, real-time fault diagnosis and prognosis of industrial machines and mechanical structures,

Intelligent real-time diagnostic and prognostic techniques for industrial applications. These techniques include deep learning, transfer learning, and neuro-fuzzy inference techniques,

AI-based solutions that are explainable, solutions utilizing the Industrial Internet. of Things, cloud computing, cyber physical systems, and machine-to-machine interfaces and paradigms for fault diagnosis and prognosis in the context of Industry 4.0.

Smart real-time data acquisition and signal processing in industrial systems, such as SCADA

Future research directions of Industrial Internet of Things towards the fifth industrial revolution.

We would also welcome review articles that capture the current state-of-the art and outline future areas of research in the fields relevant to this Special Issue.

Before submission, authors should carefully read the journal’s author guidelines, which are located at https://www.elsevier.com/journals/mechanical-systems-and-signal-processing/0888-3270/guide-for-authors. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at https://ees.elsevier.com/ymssp/default.asp?pg=login.asp according to the following timetable:



下载Call4Papers App,获取更多详细内容!
登录查看更多
1

相关内容

信号处理期刊采用了理论与实践的各个方面的信号处理。它以原始研究工作,教程和评论文章以及实际发展情况为特色。它旨在将知识和经验快速传播给从事信号处理研究,开发或实际应用的工程师和科学家。该期刊涵盖的主题领域包括:信号理论;随机过程; 检测和估计;光谱分析;过滤;信号处理系统;软件开发;图像处理; 模式识别; 光信号处理;数字信号处理; 多维信号处理;通信信号处理;生物医学信号处理;地球物理和天体信号处理;地球资源信号处理;声音和振动信号处理;数据处理; 遥感; 信号处理技术;雷达信号处理;声纳信号处理;工业应用;新的应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/sigpro/
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
人工智能顶刊TPAMI2019最新《多模态机器学习综述》
专知会员服务
93+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
45+阅读 · 2019年12月20日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员