自然语言处理工具包spaCy介绍

2016 年 11 月 14 日 AINLP 52nlp

spaCy 是一个Python自然语言处理工具包,诞生于2014年年中,号称“Industrial-Strength Natural Language Processing in Python”,是具有工业级强度的Python NLP工具包。spaCy里大量使用了 Cython 来提高相关模块的性能,这个区别于学术性质更浓的Python NLTK,因此具有了业界应用的实际价值。


安装和编译 spaCy 比较方便,在ubuntu环境下,直接用pip安装即可:


sudo apt-get install build-essential python-dev git
sudo pip install -U spacy


不过安装完毕之后,需要下载相关的模型数据,以英文模型数据为例,可以用"all"参数下载所有的数据:


sudo python -m spacy.en.download all


或者可以分别下载相关的模型和用glove训练好的词向量数据:



# 这个过程下载英文tokenizer,词性标注,句法分析,命名实体识别相关的模型
python -m spacy.en.download parser


# 这个过程下载glove训练好的词向量数据
python -m spacy.en.download glove


下载好的数据放在spacy安装目录下的data里,以我的ubuntu为例:

textminer@textminer:/usr/local/lib/python2.7/dist-packages/spacy/data$ du -sh *
776M en-1.1.0
774M en_glove_cc_300_1m_vectors-1.0.0


进入到英文数据模型下:

textminer@textminer:/usr/local/lib/python2.7/dist-packages/spacy/data/en-1.1.0$ du -sh *
424M deps
8.0K meta.json
35M ner
12M pos
84K tokenizer
300M vocab
6.3M wordnet


可以用如下命令检查模型数据是否安装成功:


textminer@textminer:~$ python -c "import spacy; spacy.load('en'); print('OK')"
OK


也可以用pytest进行测试:



# 首先找到spacy的安装路径:
python -c "import os; import spacy; print(os.path.dirname(spacy.__file__))"
/usr/local/lib/python2.7/dist-packages/spacy


# 再安装pytest:
sudo python -m pip install -U pytest


# 最后进行测试:
python -m pytest /usr/local/lib/python2.7/dist-packages/spacy --vectors --model --slow
============================= test session starts ==============================
platform linux2 -- Python 2.7.12, pytest-3.0.4, py-1.4.31, pluggy-0.4.0
rootdir: /usr/local/lib/python2.7/dist-packages/spacy, inifile:
collected 318 items

../../usr/local/lib/python2.7/dist-packages/spacy/tests/test_matcher.py ........
../../usr/local/lib/python2.7/dist-packages/spacy/tests/matcher/test_entity_id.py ....
../../usr/local/lib/python2.7/dist-packages/spacy/tests/matcher/test_matcher_bugfixes.py .....
......
../../usr/local/lib/python2.7/dist-packages/spacy/tests/vocab/test_vocab.py .......Xx
../../usr/local/lib/python2.7/dist-packages/spacy/tests/website/test_api.py x...............
../../usr/local/lib/python2.7/dist-packages/spacy/tests/website/test_home.py ............

============== 310 passed, 5 xfailed, 3 xpassed in 53.95 seconds ===============


现在可以快速测试一下spaCy的相关功能,我们以英文数据为例,spaCy目前主要支持英文和德文,对其他语言的支持正在陆续加入:



textminer@textminer:~$ ipython
Python 2.7.12 (default, Jul 1 2016, 15:12:24)
Type "copyright", "credits" or "license" for more information.

IPython 2.4.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.


In [1]: import spacy


# 加载英文模型数据,稍许等待
In [2]: nlp = spacy.load('en')


Word tokenize功能,spaCy 1.2版本加了中文tokenize接口,基于Jieba中文分词:

In [3]: test_doc = nlp(u"it's word tokenize test for spacy")

In [4]: print(test_doc)
it's word tokenize test for spacy

In [5]: for token in test_doc:
print(token)
...:
it
's
word
tokenize
test
for
spacy


英文断句:


In [6]: test_doc = nlp(u'Natural language processing (NLP) deals with the application of computational models to text or speech data. Application areas within NLP include automatic (machine) translation between languages; dialogue systems, which allow a human to interact with a machine using natural language; and information extraction, where the goal is to transform unstructured text into structured (database) representations that can be searched and browsed in flexible ways. NLP technologies are having a dramatic impact on the way people interact with computers, on the way people interact with each other through the use of language, and on the way people access the vast amount of linguistic data now in electronic form. From a scientific viewpoint, NLP involves fundamental questions of how to structure formal models (for example statistical models) of natural language phenomena, and of how to design algorithms that implement these models.')


In [7]: for sent in test_doc.sents:
print(sent)
...:
Natural language processing (NLP) deals with the application of computational models to text or speech data.
Application areas within NLP include automatic (machine) translation between languages; dialogue systems, which allow a human to interact with a machine using natural language; and information extraction, where the goal is to transform unstructured text into structured (database) representations that can be searched and browsed in flexible ways.
NLP technologies are having a dramatic impact on the way people interact with computers, on the way people interact with each other through the use of language, and on the way people access the vast amount of linguistic data now in electronic form.
From a scientific viewpoint, NLP involves fundamental questions of how to structure formal models (for example statistical models) of natural language phenomena, and of how to design algorithms that implement these models.



词干化(Lemmatize):


In [8]: test_doc = nlp(u"you are best. it is lemmatize test for spacy. I love these books")


In [9]: for token in test_doc:
print(token, token.lemma_, token.lemma)
...:
(you, u'you', 472)
(are, u'be', 488)
(best, u'good', 556)
(., u'.', 419)
(it, u'it', 473)
(is, u'be', 488)
(lemmatize, u'lemmatize', 1510296)
(test, u'test', 1351)
(for, u'for', 480)
(spacy, u'spacy', 173783)
(., u'.', 419)
(I, u'i', 570)
(love, u'love', 644)
(these, u'these', 642)
(books, u'book', 1011)


词性标注(POS Tagging):


In [10]: for token in test_doc:
print(token, token.pos_, token.pos)
....:
(you, u'PRON', 92)
(are, u'VERB', 97)
(best, u'ADJ', 82)
(., u'PUNCT', 94)
(it, u'PRON', 92)
(is, u'VERB', 97)
(lemmatize, u'ADJ', 82)
(test, u'NOUN', 89)
(for, u'ADP', 83)
(spacy, u'NOUN', 89)
(., u'PUNCT', 94)
(I, u'PRON', 92)
(love, u'VERB', 97)
(these, u'DET', 87)
(books, u'NOUN', 89)


命名实体识别(NER):


In [11]: test_doc = nlp(u"Rami Eid is studying at Stony Brook University in New York")


In [12]: for ent in test_doc.ents:
print(ent, ent.label_, ent.label)
....:
(Rami Eid, u'PERSON', 346)
(Stony Brook University, u'ORG', 349)
(New York, u'GPE', 350)


名词短语提取:


In [13]: test_doc = nlp(u'Natural language processing (NLP) deals with the application of computational models to text or speech data. Application areas within NLP include automatic (machine) translation between languages; dialogue systems, which allow a human to interact with a machine using natural language; and information extraction, where the goal is to transform unstructured text into structured (database) representations that can be searched and browsed in flexible ways. NLP technologies are having a dramatic impact on the way people interact with computers, on the way people interact with each other through the use of language, and on the way people access the vast amount of linguistic data now in electronic form. From a scientific viewpoint, NLP involves fundamental questions of how to structure formal models (for example statistical models) of natural language phenomena, and of how to design algorithms that implement these models.')


In [14]: for np in test_doc.noun_chunks:
print(np)
....:
Natural language processing
Natural language processing (NLP) deals
the application
computational models
text
speech
data
Application areas
NLP
automatic (machine) translation
languages
dialogue systems
a human
a machine
natural language
information extraction
the goal
unstructured text
structured (database) representations
flexible ways
NLP technologies
a dramatic impact
the way
people
computers
the way
people
the use
language
the way
people
the vast amount
linguistic data
electronic form
a scientific viewpoint
NLP
fundamental questions
formal models
example
natural language phenomena
algorithms
these models


基于词向量计算两个单词的相似度:


In [15]: test_doc = nlp(u"Apples and oranges are similar. Boots and hippos aren't.")


In [16]: apples = test_doc[0]

In [17]: print(apples)
Apples

In [18]: oranges = test_doc[2]

In [19]: print(oranges)
oranges

In [20]: boots = test_doc[6]

In [21]: print(boots)
Boots

In [22]: hippos = test_doc[8]

In [23]: print(hippos)
hippos

In [24]: apples.similarity(oranges)
Out[24]: 0.77809414836023805

In [25]: boots.similarity(hippos)
Out[25]: 0.038474555379008429


当然,spaCy还包括句法分析的相关功能等。另外值得关注的是 spaCy 从1.0版本起,加入了对深度学习工具的支持,例如 Tensorflow 和 Keras 等,这方面具体可以参考官方文档给出的一个对情感分析(Sentiment Analysis)模型进行分析的例子:Hooking a deep learning model into spaCy.


参考:
spaCy官方文档
Getting Started with spaCy


点击“阅读原文”更精彩

登录查看更多
18

相关内容

【ACL2020-复旦大学NLP】异构图神经网络的文档摘要提取
专知会员服务
34+阅读 · 2020年5月1日
《深度学习》圣经花书的数学推导、原理与Python代码实现
【2020新书】数据科学:十大Python项目,247页pdf
专知会员服务
212+阅读 · 2020年2月21日
【教程】自然语言处理中的迁移学习原理,41 页PPT
专知会员服务
95+阅读 · 2020年2月8日
深度学习自然语言处理综述,266篇参考文献
专知会员服务
229+阅读 · 2019年10月12日
Github项目推荐 | gensim - Python中的主题建模
AI研习社
15+阅读 · 2019年3月16日
自然语言处理 | 使用Spacy 进行自然语言处理(二)
机器学习和数学
10+阅读 · 2018年8月27日
自然语言处理 | 使用Spacy 进行自然语言处理
机器学习和数学
18+阅读 · 2018年8月22日
在Python中使用SpaCy进行文本分类
专知
24+阅读 · 2018年5月8日
教你用Python进行自然语言处理(附代码)
数据派THU
6+阅读 · 2018年3月28日
Python 自然语言处理(NLP)工具库汇总
数据挖掘入门与实战
7+阅读 · 2017年9月25日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关资讯
Github项目推荐 | gensim - Python中的主题建模
AI研习社
15+阅读 · 2019年3月16日
自然语言处理 | 使用Spacy 进行自然语言处理(二)
机器学习和数学
10+阅读 · 2018年8月27日
自然语言处理 | 使用Spacy 进行自然语言处理
机器学习和数学
18+阅读 · 2018年8月22日
在Python中使用SpaCy进行文本分类
专知
24+阅读 · 2018年5月8日
教你用Python进行自然语言处理(附代码)
数据派THU
6+阅读 · 2018年3月28日
Python 自然语言处理(NLP)工具库汇总
数据挖掘入门与实战
7+阅读 · 2017年9月25日
Top
微信扫码咨询专知VIP会员