这个可访问的文本/参考提供了从工程角度对概率图模型(PGMs)的一般介绍。这本书涵盖了每一个PGMs的主要类的基础知识,包括表示、推理和学习原则,并回顾了每种类型模型的实际应用。这些应用来自广泛的学科领域,突出了贝叶斯分类器、隐马尔可夫模型、贝叶斯网络、动态和时态贝叶斯网络、马尔可夫随机域、影响图和马尔可夫决策过程的多种用途。
提出了一个统一的框架,包括所有的主要类别的PGMs;描述不同技术的实际应用;检视该领域的最新发展,包括多维贝叶斯分类器、相关图模型和因果模型;在每一章的结尾提供练习,进一步阅读的建议,和研究或编程项目的想法。
https://www.springer.com/gp/book/9781447166986
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“PGMPA” 就可以获取《概率图模型:原理与应用,267页pdf,计算机视觉和模式识别的原理和应用进展》专知下载链接