【ICML2020-浙江大学】对抗性互信息的文本生成

2020 年 7 月 4 日 专知

Adversarial Mutual Information for Text Generation


在最大化源与目标之间的互信息方面的最新进展已经证明了它在文本生成方面的有效性。然而,以往的工作对MI(即MI)的后向网络建模关注较少。这对于变分信息最大化下界的紧密性至关重要。在本文中,我们提出了一个对抗互信息(AMI):一个文本生成框架,它是一个新的鞍点(min-max)优化,旨在识别源与目标之间的联合交互。在这个框架中,通过比较真实和合成的数据分布,前向网络和后向网络能够迭代地提升或降级彼此生成的实例。我们还开发了一个潜在噪声采样策略,利用高级语义空间的随机变化来增强生成过程中的长期依赖性。基于不同文本生成任务的大量实验表明,所提出的AMI框架能够显著优于多个强基线,我们还表明,AMI有可能为变分信息最大化问题带来更紧密的互信息上限。

https://www.zhuanzhi.ai/paper/ccd8403755c153d155bec032656f8c49




专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“AMITG” 可以获取《【ICML2020-浙江大学】对抗性互信息的文本生成》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
欢迎扫一扫关注专知视频号,第一时间看人工智能最新精彩视频!

点击“阅读原文”,了解使用专知,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
34+阅读 · 2020年8月23日
专知会员服务
29+阅读 · 2020年7月31日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
【ICML2020-西电】用于语言生成的递归层次主题引导RNN
专知会员服务
21+阅读 · 2020年6月30日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
【ICML2020】持续终身学习的神经主题建模
专知会员服务
37+阅读 · 2020年6月22日
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
83+阅读 · 2020年6月9日
【ICML2020-哈佛】深度语言表示中可分流形
专知会员服务
12+阅读 · 2020年6月2日
【资源】NLP深度生成模型会议/论文列表
专知
9+阅读 · 2019年11月19日
基于深度学习的文本生成【附217页PPT下载】
专知
35+阅读 · 2018年11月24日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
6+阅读 · 2018年4月21日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
相关VIP内容
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
34+阅读 · 2020年8月23日
专知会员服务
29+阅读 · 2020年7月31日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
【ICML2020-西电】用于语言生成的递归层次主题引导RNN
专知会员服务
21+阅读 · 2020年6月30日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
【ICML2020】持续终身学习的神经主题建模
专知会员服务
37+阅读 · 2020年6月22日
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
83+阅读 · 2020年6月9日
【ICML2020-哈佛】深度语言表示中可分流形
专知会员服务
12+阅读 · 2020年6月2日
相关论文
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
6+阅读 · 2018年4月21日
Arxiv
4+阅读 · 2018年4月17日
Top
微信扫码咨询专知VIP会员