材料模拟更进一步:能确保维持基态的模型构建

2017 年 9 月 27 日 知社学术圈 npj CM

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月


第一原理密度泛函理论计算是计算材料学研究中最常用的一种工具,但在模拟含数千个原子的大型结构时,通常还用到集群扩展模型,并需要人为手动调整参数以保证基态准确,从而决定材料属性,不方便,也不准确。来自美国麻省理工学院、加州大学伯克利分校和劳伦斯伯克利国家实验室的Gerbrand Ceder教授(美国2017年新科工程院院士)领导的国际研究团队,提出了一个系统的、数学上可靠的方法,即:基于压缩感知途径来建立集群扩展模型,利用二次规划对模型参数加以约束,从而保持基态而无需人为调整参数。他们以锂离子电池阴极的两种锂过渡金属氧化物(Li2xFe2(1-x)O2和Li2xTi2(1-x)O2)为例,构建了极具挑战的、带有压缩感知能力的集群扩展模型,证实了该方法的强大实用性,不仅保证了为模型构建而使用的参考结构集的基态准确,而且通过快速收敛迭代保证了样本之外尺寸较大的超胞的基态可靠性。因此,他们的方法为构建实用的、压缩的、受约束的、有预测功能的物理模型,提供了一种通用工具。该文近期发表于npj Computational Materials 3:30 (2017); oi:10.1038/s41524-017-0032-0; 标题与摘要如下,论文PDF文末点击阅读原文可以获取。



Construction of ground-state preserving sparse lattice models for predictive materials simulations (构建能保持基态稀有晶格的模型以预测模拟材料)


Wenxuan Huang, Alexander Urban, Ziqin Rong, Zhiwei Ding, Chuan Luo & Gerbrand Ceder


First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with relevance for Li-ion battery cathodes, i.e., Li2x Fe2(1−x)O2 and Li2xTi2(1−x)O2, for which the construction of cluster expansion models with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method provides a general tool for building robust, compressed and constrained physical models with predictive power.



扩展阅读
 

从原子水平揭示氢如何使金属遭受破坏

金属间化合物不稳定机制:位错攀爬-滑移-原子重排

晶粒生长:其统计行为的计算模拟

高熵合金的特殊性质:簇-胶原子模型

如何通过计算模拟高效筛选高性能太阳能电池染料

npj Computational Materials两名编委获学术殊荣

npj: 晶界影响孪晶形成

npj: 面心立方金属的三维多边体晶界结构模型

npj: 结构材料孪晶晶界的稳定性

本文系网易新闻·网易号“各有态度”特色内容

欢迎广大学者供稿,报道最新研究成果投稿、授权、合作事宜请联系

service@scholarset.com 或微信ID: scholarset

回复“目录”或“”,浏览知社更多精华。长按二维码识别,可以关注/进入公众号进行回复。

登录查看更多
1

相关内容

专知会员服务
19+阅读 · 2020年3月29日
专知会员服务
60+阅读 · 2020年3月19日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
【泡泡一分钟】基于表面的自主三维建模探索
泡泡机器人SLAM
9+阅读 · 2019年9月10日
一文读懂机器学习模型的选择与取舍
DBAplus社群
13+阅读 · 2019年8月25日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
npj: 机器学习添视觉—材料缺陷快分析
知社学术圈
6+阅读 · 2018年8月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2020年3月29日
专知会员服务
60+阅读 · 2020年3月19日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
【泡泡一分钟】基于表面的自主三维建模探索
泡泡机器人SLAM
9+阅读 · 2019年9月10日
一文读懂机器学习模型的选择与取舍
DBAplus社群
13+阅读 · 2019年8月25日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
npj: 机器学习添视觉—材料缺陷快分析
知社学术圈
6+阅读 · 2018年8月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
相关论文
Arxiv
45+阅读 · 2019年12月20日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
3+阅读 · 2015年5月16日
Top
微信扫码咨询专知VIP会员