©PaperWeekly 原创 · 作者|宁晓军
学校|北京交通大学硕士生
研究方向|时间序列分析与挖掘;图神经网络
论文标题:
GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification
论文链接:
https://www.ijcai.org/Proceedings/2020/0184.pdf
代码链接:
https://github.com/ziyujia/GraphSleepNet
论文作者主页:
https://ziyujia.github.io/
背景简介
睡眠阶段分类对睡眠质量的评估和疾病的诊断具有重要意义,睡眠专家通常根据睡眠分期标准和多导睡眠图(polysomnography, PSG)来判定睡眠状态。在目前的睡眠分期领域研究中,睡眠专家通常使用 R&K 睡眠分期标准和美国睡眠医学会(AASM)制定的睡眠分期标准进行睡眠阶段的识别。
动机
2.1 挑战
2.1.1 网格数据的局限性
2.1.2 大脑连接关系的建模
基于图卷积神经网络在图结构数据中的成功应用,我们采用图结构表示方法研究睡眠分期问题,在多导 EEG 数据中,每个 EEG 通道对应于睡眠图中的一个节点,两个节点之间的连接对应于睡眠图中存在的边。
2.1.3 睡眠过渡规则
2.2 贡献
问题定义
Adaptive Spatial-Temporal GCN
GraphSleepNet 的总体架构如图 2 所示。我们总结了本文模型的三大关键点:
1)该模型能够表示节点之间的功能连接关系并动态构造邻接矩阵(脑连接网络);
2)该模型利用空间图卷积和时间卷积提取睡眠脑电信号的空间特征和时间特征;
通过使用切比雪夫多项式的近似展开,可以提取到以每个节点为中心的 0 到 K -1 阶邻居的信息。
(1)Spatial Attention
(2)Temporal Attention
实验
5.1 Datasets
我们在 Montreal Archive of Sleep Studies(MASS)-SS3 数据集上评估了我们提出的模型。MASS-SS3 数据集包含来自 62 名健康受试者(28 名男性和 34 名女性)的 PSG 记录。每次记录包含 20 导 EEG、2 导 EOG、3 导 EMG 和 1 导 ECG。
传统的机器学习方法(SVM、RF)不能很好地学习复杂的时空特征。然而现有的深度学习模型如 CNN 和 RNN 可以直接提取空间或时间特征,因此其性能优于基于传统机器学习的方法。
为了进一步研究自适应睡眠图学习的有效性,我们设计了五个固定的邻接矩阵与之进行比较。
结论
更多阅读
#投 稿 通 道#
让你的论文被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学习心得或技术干货。我们的目的只有一个,让知识真正流动起来。
📝 来稿标准:
• 稿件确系个人原创作品,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向)
• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接
• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志
📬 投稿邮箱:
• 投稿邮箱:hr@paperweekly.site
• 所有文章配图,请单独在附件中发送
• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
关于PaperWeekly
PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。