加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!
同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~
机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算变量
训练数据进行归一化处理有助于模型的优化,对于深度模型来说,归一化中间特征同样有助于训练,BN层就是最常用的归一化方法。BN层通过计算batch中所有样本的每个channel上的均值和方差来进行归一化,其计算方式如下所示:
以CNN模型为例,中间特征的维度为[B, H, W, C],BN首先在计算在(N H, W)维度上的均值和方差,然后各个通道上(C维度)进行标准归一化。最后对归一化的特征进行放缩和平移(scale and shift),这里和是可学习的参数(参数大小为C)。
BN的一个问题是训练时batch size一般较大,但是测试时batch size一般为1,而均值和方差的计算依赖batch,这将导致训练和测试不一致。BN的解决方案是在训练时估计一个均值和方差量来作为测试时的归一化参数,一般对每次mini-batch的均值和方差进行指数加权平均来得到这个量。虽然解决了训练和测试的不一致性,但是BN对于batch size比较敏感,当batch size较小时,模型性能会明显恶化。对于一个比较大的模型,由于显存限制,batch size难以很大,比如目标检测模型,这时候BN层可能会成为一种限制。
解决BN上述问题的另外一个方向是避免在batch维度进行归一化,这样当然就不会带来训练和测试的不一致性问题。这些方法包括Layer Normalization (LN),Instance Normalization (IN)以及最新的Group Normalization(GN),这些方法与BN的区别可以从图1中看出来:
图1 不同的归一化方法对比
这些方法处理方式和BN类似,但是归一化的维度不一样,BN是在(N, H, W)维度上,LN是在(H,W,C)维度上,IN是在(H,W)维度上,GN更巧妙,其通过对C分组,此时特征可以从[N, H, W, C]变成[N, H, W, G, C/G],GN的计算是在[H, W, G]维度上。LN,IN以及GN都没有在B维度上进行归一化,所以不会有BN的问题。相比之下,GN是更常用的,GN和BN的效果对比如图2所示:
图2 ResNet50模型采用BN和GN在ImageNet上不同batch size下的性能差异
从图中可以看到GN基本不受batch size的影响,而BN在batch size较小时性能大幅度恶化,但是在较大batch size,BN的效果是稍好于GN的。
解决BN在小batch性能较差的另外一个方向是直接降低训练和测试之间不一致性,比较常用的方法是Batch Renormalization (BR),它主要的思路是限制训练过程中batch统计量的值范围。另外的一个解决办法是采用多卡BN方法训练,相当于增大batch size。
图4 当N=1时不同e对FRN归一化的影响
def FRNLayer(x, tau, beta, gamma, eps=1e-6):
# x: Input tensor of shape [BxHxWxC].
# alpha, beta, gamma: Variables of shape [1, 1, 1, C].
# eps: A scalar constant or learnable variable.
# Compute the mean norm of activations per channel.
nu2 = tf.reduce_mean(tf.square(x), axis=[1, 2],
keepdims=True)
# Perform FRN.
x = x * tf.rsqrt(nu2 + tf.abs(eps))
# Return after applying the Offset-ReLU non-linearity.
return tf.maximum(gamma * x + beta, tau)
可以看到FRN是不受batch size的影响,而且效果是超越BN的。论文中还有更多的对比试验证明FRN的优越性。
BN目前依然是最常用的归一化方法,GN虽然不会受batch size的影响,但是目前还没大范围采用,不知道FRN的提出会不会替代BN,这需要时间的检验。
-End-
*延伸阅读
CV细分方向交流群
添加极市小助手微信(ID : cv-mart),备注:研究方向-姓名-学校/公司-城市(如:目标检测-小极-北大-深圳),即可申请加入目标检测、目标跟踪、人脸、工业检测、医学影像、三维&SLAM、图像分割、OCR、姿态估计等极市技术交流群(已经添加小助手的好友直接私信),更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~
△长按添加极市小助手
△长按关注极市平台
觉得有用麻烦给个在看啦~