中文版协同过滤推荐系统综述

2021 年 11 月 5 日 机器学习与推荐算法
嘿,记得给“机器学习与推荐算法”添加星标


随着互联网和信息计算的飞速发展,互联网衍生了海量数据,我们已经进入信息爆炸的时代。网络中各种信息量的指数型增长导致用户想要从大量信息中找到自己需要的信息变得越来越困难,信息过载问题日益突出。推荐系统在缓解信息过载问题中起着非常重要的作用,该方法通过研究用户的兴趣偏好进行个性化计算,由系统发现用户兴趣进而引导用户发现自己的信息需求。

目前,推荐系统已经成为产业界和学术界关注、研究的热点问题,应用领域十分广泛。在电子商务、会话推荐、文章推荐、智慧医疗等多个领域都有所应用。传统的推荐算法主要包括基于内容的推荐、协同过滤推荐以及混合推荐。其中,协同过滤推荐是推荐系统中应用最广泛最成功的技术之一。该方法利用用户或物品间的相似度以及历史行为数据对目标用户进行推荐,因此存在用户冷启动和项目冷启动问题。此外,随着信息量的急剧增长,传统协同过滤推荐系统面对数据的快速增长会遇到严重的数据稀疏性问题以及可扩展性问题。为了缓解甚至解决这些问题,推荐系统研究人员进行了大量的工作。

近年来,为了提高推荐效果、提升用户满意度,学者们开始关注推荐系统的多样性问题以及可解释性等问题。由于深度学习方法可以通过发现数据中用户和项目之间的非线性关系从而学习一个有效的特征表示,因此越来越受到推荐系统研究人员的关注。目前的工作主要是利用评分数据、社交网络信息以及其他领域信息等辅助信息,结合深度学习、数据挖掘等技术提高推荐效果、提升用户满意度。对此,本文首先对推荐系统以及传统推荐算法进行概述,然后重点介绍协同过滤推荐算法的相关工作。包括协同过滤推荐算法的任务、评价指标、常用数据集以及学者们在解决协同过滤算法存在的问题时所做的工作以及努力。最后提出未来的几个可研究方向。


http://jcs.iie.ac.cn/xxaqxb/ch/reader/view_abstract.aspx?file_no=20210502&flag=1


欢迎干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

总结 | 基于知识蒸馏的推荐系统

论文快报 | 推荐系统领域最新研究进展

Recsys21 | 浅谈推荐如何在NLP肩膀上前进

由于微信公众号试行乱序推送,您可能不再能准时收到机器学习与推荐算法的推送。为了第一时间收到干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。

喜欢的话点个在看吧👇
登录查看更多
0

相关内容

利用已有的用户群过去的行为或者意见预测当前用户最可能喜欢哪些东西或者对哪些东西感兴趣。主要应用场景是在线零售系统,目的是进行商品促销和提高销售额。
知识驱动的推荐系统:现状与展望
专知会员服务
68+阅读 · 2021年11月22日
协同过滤推荐系统综述
专知会员服务
46+阅读 · 2021年11月4日
基于强化学习的推荐研究综述
专知会员服务
83+阅读 · 2021年10月21日
专知会员服务
48+阅读 · 2021年6月26日
专知会员服务
187+阅读 · 2021年2月4日
专知会员服务
200+阅读 · 2020年12月5日
图神经网络综述 (中文版),14页pdf
专知会员服务
331+阅读 · 2020年11月24日
应用知识图谱的推荐方法与系统
专知会员服务
115+阅读 · 2020年11月23日
基于知识图谱的推荐系统研究综述
专知会员服务
328+阅读 · 2020年8月10日
南洋理工大学,深度学习推荐系统综述
专知会员服务
174+阅读 · 2019年10月14日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
基于区块链技术的推荐算法综述
机器学习与推荐算法
2+阅读 · 2021年12月1日
对话推荐算法研究综述
机器学习与推荐算法
0+阅读 · 2021年11月26日
知识驱动的推荐系统:现状与展望
专知
1+阅读 · 2021年11月22日
基于知识图谱的推荐系统总结
机器学习与推荐算法
4+阅读 · 2021年11月11日
注意力机制综述(中文版)
专知
23+阅读 · 2021年1月26日
多模态视觉语言表征学习研究综述
专知
27+阅读 · 2020年12月3日
AI综述专栏 | 跨领域推荐系统文献综述(上)
人工智能前沿讲习班
13+阅读 · 2018年5月16日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
58+阅读 · 2021年11月15日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
知识驱动的推荐系统:现状与展望
专知会员服务
68+阅读 · 2021年11月22日
协同过滤推荐系统综述
专知会员服务
46+阅读 · 2021年11月4日
基于强化学习的推荐研究综述
专知会员服务
83+阅读 · 2021年10月21日
专知会员服务
48+阅读 · 2021年6月26日
专知会员服务
187+阅读 · 2021年2月4日
专知会员服务
200+阅读 · 2020年12月5日
图神经网络综述 (中文版),14页pdf
专知会员服务
331+阅读 · 2020年11月24日
应用知识图谱的推荐方法与系统
专知会员服务
115+阅读 · 2020年11月23日
基于知识图谱的推荐系统研究综述
专知会员服务
328+阅读 · 2020年8月10日
南洋理工大学,深度学习推荐系统综述
专知会员服务
174+阅读 · 2019年10月14日
相关资讯
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
基于区块链技术的推荐算法综述
机器学习与推荐算法
2+阅读 · 2021年12月1日
对话推荐算法研究综述
机器学习与推荐算法
0+阅读 · 2021年11月26日
知识驱动的推荐系统:现状与展望
专知
1+阅读 · 2021年11月22日
基于知识图谱的推荐系统总结
机器学习与推荐算法
4+阅读 · 2021年11月11日
注意力机制综述(中文版)
专知
23+阅读 · 2021年1月26日
多模态视觉语言表征学习研究综述
专知
27+阅读 · 2020年12月3日
AI综述专栏 | 跨领域推荐系统文献综述(上)
人工智能前沿讲习班
13+阅读 · 2018年5月16日
相关基金
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员