商询科技李劼:用MR拯救“垃圾大数据”,重构知识图谱是制胜关键 | 镁客请讲

2018 年 2 月 5 日 镁客网 伶轩


数据只有在经过提炼成为“知识”之后才会有价值,在这之前,即便数据再多,也都是数据“垃圾”。


“数据只有在经过提炼之后才会成为有价值的‘知识’,在这之前,即便数据再多,也都是‘垃圾’。而我们,就是数据‘垃圾’的淘金者。” DataMesh商询科技创始人&CEO李劼说。

图 | DataMesh商询科技创始人&CEO李劼

将MR与大数据对接

是一个具有挑战性质的跨界


李劼是一个技术大牛,曾任职于美国微软总部,且长达8年。8年时间里,李劼积累了大量有关于企业搜索、知识管理、大数据分析等方面的工作经历。

创业是我一直以来的梦想,所以在14年,我选择了回国。”

回国之后,李劼并没有立马投身进创业大军中,而是加入了广联达(数字建筑产业平台服务商),任技术顾问一职。深入了解国内创业环境和技术发展情势之后,2014年9月,李劼正式创立DataMesh商询科技。

2015年,李劼接触到了微软的MR头显——HoloLens。惊叹之余,李劼认为,将大数据与MR相结合,为企业客户提供世界级的混合现实与数据解决方案,会是一件值得去做的事情,尤其是在制造行业的市场应用前景,非常的大。

然而,将MR与大数据对接看似简单,却需要团队同时具备混合现实和大数据两大科技领域的开发和运营经验,这是一个具有挑战性质的跨界。

“我们就是一个跨界团队。”李劼说:“一方面,我们在数据、搜索、机器学习、自然语言处理等前沿技术上有着丰富、领先的实战开发经验;另一方面,在实际体验上,我们也非常擅长VR/AR/MR等类网游技术开发。”

让数据会“找人”

才能将“垃圾”数据变为“黄金”


“通过MR和大数据技术的结合,帮助制造行业原本的图谱进行组织、重构,就是我们目前正在做的事情。”

和大多数人不同,李劼并不喜欢单纯去积累大数据,无论这些数据有多庞大、多丰富,如果不能对实践具备指导意义,也只是“一堆数据垃圾”。

“我们需要的是知识,不是单纯的数据。因此,我们要对固有的‘人找数据’的模式做一些改变,让数据学会找人,定向推送他们需要的信息。”

举个简单的例子,在汽车维修产线上,维修部门和维修工人都有其自己的维修经验,这些有价值的经验就是“知识”。DataMesh所做的,就是将这些知识图谱整合起来,通过分拣、分析,在这些图谱中打上各种信息标签。随后,再通过机器学习、自然语言处理等技术,赋予图谱以“人性”,让其成为一个“图书馆管理员”,或者一位“数据助手”。一旦维修工人有需要,这位“数据助手”就会根据工人所处的环境和所面对的问题,自动将“知识”推送给他,告诉他哪里坏了、应该怎么修或者找什么样的人来修。

“传统制造领域是非常需要这样的‘数据助手’的。众所周知,当前的制造业大多有其固有的生产线,一旦某一或某几个环节出现问题,整个生产线就得停产,直到问题解决为止。而如果通过传统的方式去查找问题、寻找专家、维修、检测,会花费大量的时间,所造成的损失是很大的。”

目前,DataMesh在汽车制造行业,已经和北京奔驰、北汽集团、一汽大众、广汽本田等的汽车制造厂商合作,为他们提供包括知识图谱、远程专家等专业服务。

MR技术成熟前

行业者需耐心培育市场


“当前的MR技术和设备,暂时还不足以负荷制造行业的”生产线痛点“的全部需求”,李劼告诉镁客网记者。

对于制造行业来说,一次操作或远程指导有可能长达6个小时甚至以上。在晕眩等问题没有解决、头显重量没有降低的情况下,长时间佩戴MR头显也会对作业人员造成部分负担。所以,大多数情况下,他们会建议作业人员使用可随身携带的设备,如平板等。

AR/MR是一种发展趋势,其技术和解决方案研发是有价值可寻的。可以看到,随着相关技术和产品的面世,很多传统行业对AR/MR的应用也越来越感兴趣,大型科技公司也在相关领域积极布局。在行业发展不够成熟之前,培育市场、寻找落地应用点就成为了关键所在。

“在MR方面,目前我们主要专注于两个领域,培训说明和展示汇报。”

培训说明方面,DataMesh会开发一些简单的3D模型以供教学所用。除此之外,他们还会在复杂场景内,基于空间坐标,提供触发场景式服务。

展示汇报方面,DataMesh则与各个展厅、电视台、建筑地产商等合作,将复杂的场景直观化,增添体验乐趣。

“2018年,我们将继续垂直于汽车制造行业,利用核心技术,将行业做深做透。与此同时,我们还会继续开拓地产、公共安防等领域,加大市场培训力度和速度,寻求突破性进展。”

总结


数据和MR都是风口领域,DataMesh就是在这种“双风口”的情况下找到了他们的联通性,并将“跨界”做深做实。

而从当前行业发展情况看,无论在大数据还是MR技术开发上,大多数创业公司都还未找到有价值的应用场景,迟迟未能实现商业落地。

“今年的行业重点依旧会在‘找场景’上。预计到2109年,技术、设备相对成熟和一部分市场被培育出来后,行业将迎来一波商业化高潮。”李劼说。

/- 推荐阅读 -/



▲ 比特人生:信仰下的欲望、疯狂与迷惘 | 特稿


 双面银隆


 国内真正有技术开发能力的不足200人,区块链是否“只是一种传说”?| 深度

镁客网

科技 | 人文 | 行业
微信ID:im2maker
长按识别二维码关注

硬科技第一产业媒体

提供最有价值的行业观察

登录查看更多
0

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
192+阅读 · 2020年6月29日
【干货书】现代数据平台架构,636页pdf
专知会员服务
253+阅读 · 2020年6月15日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【2020新书】如何认真写好的代码和软件,318页pdf
专知会员服务
63+阅读 · 2020年3月26日
《代码整洁之道》:5大基本要点
专知会员服务
49+阅读 · 2020年3月3日
医疗知识图谱构建与应用
专知会员服务
384+阅读 · 2019年9月25日
【知识图谱】大数据时代的知识工程与知识管理
产业智能官
22+阅读 · 2019年7月3日
为什么说深耕AI领域绕不开知识图谱?
人工智能学家
33+阅读 · 2019年5月30日
领域应用 | 企业效益最大化的秘密:知识图谱
开放知识图谱
8+阅读 · 2019年4月11日
靠谱!NLP值得学习的关键技术有哪些?
AI前线
6+阅读 · 2019年3月10日
【智能医疗】如何利用深度学习诊断心脏病?
产业智能官
8+阅读 · 2017年10月3日
自然语言处理技术(NLP)在推荐系统中的应用
CSDN大数据
4+阅读 · 2017年6月29日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
Arxiv
4+阅读 · 2018年6月5日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
192+阅读 · 2020年6月29日
【干货书】现代数据平台架构,636页pdf
专知会员服务
253+阅读 · 2020年6月15日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【2020新书】如何认真写好的代码和软件,318页pdf
专知会员服务
63+阅读 · 2020年3月26日
《代码整洁之道》:5大基本要点
专知会员服务
49+阅读 · 2020年3月3日
医疗知识图谱构建与应用
专知会员服务
384+阅读 · 2019年9月25日
相关资讯
【知识图谱】大数据时代的知识工程与知识管理
产业智能官
22+阅读 · 2019年7月3日
为什么说深耕AI领域绕不开知识图谱?
人工智能学家
33+阅读 · 2019年5月30日
领域应用 | 企业效益最大化的秘密:知识图谱
开放知识图谱
8+阅读 · 2019年4月11日
靠谱!NLP值得学习的关键技术有哪些?
AI前线
6+阅读 · 2019年3月10日
【智能医疗】如何利用深度学习诊断心脏病?
产业智能官
8+阅读 · 2017年10月3日
自然语言处理技术(NLP)在推荐系统中的应用
CSDN大数据
4+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员