论文浅尝 | Aligning Knowledge Base and Document Embedding Models

2019 年 1 月 29 日 开放知识图谱

本文是我们于苏黎世大学合作的关注与知识图谱和文本对齐的论文,发表于ISWC2018.

 

文本和知识图谱都包含了丰富的信息, 其中知识图谱用结构化的三元组表示信息,文本用自由文本形式表示信息,信息表示的差异给知识图谱和文本融合对齐造成了困难,本文关注于如何将知识图谱于文本进行对齐,并提出了基于正则的多任务学习的对齐模型KADE

 

文本选择了将知识图谱的实体和描述实体的文本进行对齐,首先将文本和知识图谱都通过表示学习映射到向量空间,学习到文本和实体的向量表示,在学习过程中加入正则约束使表示同一实体的实体向量和描述文本在向量空间中尽可能接近,知识图谱和文本的表示学习模型交替进行训练,从而在不影响文本和知识图谱各自的表示学习效果的情况下实现对齐。KADE的核心想法如下:

本文的实验主要采用了三个数据集,FB15k, FB40KDBP50。实验中知识图谱表示学习采用了TransE,TransH TransD,并在链接预测任务上进行了测试,实验结果如下并表明了KADE对知识图谱表示学习模型本身的效果没有影响且稍有提升。

实验中文本表示学习模型采用了PV-DM, 并在文本分类任务上进行了测试,实验结果如下并标明了KADE对文本表示学习模型的效果没有影响且有明显提升。

本文还验证了KADE的对齐效果,提出了一个评价对齐效果的指标normalizedalignment score, 这是一个介于01之间的值且值越大说明对齐效果越好。我们构造了一个对齐的baseline通过非线性函数实现文本表示学习向量空间和知识图谱表示学习向量空间的互相转换,实验结果如下:

从上图的实验结果能够看出,简单了非线性空间映射几乎无法完成对齐任务,同时KADE实现了知识图谱实体和实体描述文本的对齐。

 

对本文有兴趣的读者欢迎阅读原文~

 

笔记整理:张文,浙江大学在读博士,研究方向为知识图谱的表示学习,推理和可解释。



OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

点击阅读原文,进入 OpenKG 博客。

登录查看更多
2

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
论文浅尝 | 基于知识图谱中图卷积神经网络的推荐系统
开放知识图谱
67+阅读 · 2019年8月27日
论文浅尝 | 5 篇顶会论文带你了解知识图谱最新研究进展
论文浅尝 | TuckER:基于张量分解的知识图谱补全
开放知识图谱
34+阅读 · 2019年3月17日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
论文浅尝 | 基于局内去噪和迁移学习的关系抽取
开放知识图谱
16+阅读 · 2018年12月2日
论文浅尝 | 基于开放世界的知识图谱补全
开放知识图谱
11+阅读 · 2018年7月3日
论文浅尝 | 基于多原型mention向量的文本-实体联合学习
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
论文浅尝 | CFO: Conditional Focused Neural Question Answering
开放知识图谱
6+阅读 · 2017年12月15日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
9+阅读 · 2018年10月18日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
4+阅读 · 2017年10月30日
VIP会员
相关VIP内容
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
相关资讯
论文浅尝 | 基于知识图谱中图卷积神经网络的推荐系统
开放知识图谱
67+阅读 · 2019年8月27日
论文浅尝 | 5 篇顶会论文带你了解知识图谱最新研究进展
论文浅尝 | TuckER:基于张量分解的知识图谱补全
开放知识图谱
34+阅读 · 2019年3月17日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
论文浅尝 | 基于局内去噪和迁移学习的关系抽取
开放知识图谱
16+阅读 · 2018年12月2日
论文浅尝 | 基于开放世界的知识图谱补全
开放知识图谱
11+阅读 · 2018年7月3日
论文浅尝 | 基于多原型mention向量的文本-实体联合学习
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
论文浅尝 | CFO: Conditional Focused Neural Question Answering
开放知识图谱
6+阅读 · 2017年12月15日
Top
微信扫码咨询专知VIP会员