系统学习:使用OpenCV和Python实现的机器学习

2017 年 7 月 24 日 全球人工智能


欢迎加入全球最大AI社群>>

前言

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/00.00-Preface.ipynb

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/00.01-Foreword-by-Ariel-Rokem.ipynb

  1. 机器学习的味道

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/01.00-A-Taste-of-Machine-Learning.ipynb

  2. 在OpenCV中使用数据

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.00-Working-with-Data-in-OpenCV.ipynb

    • 使用Python的NumPy软件包处理数据

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.01-Dealing-with-Data-Using-Python-NumPy.ipynb

    • 在Python中加载外部数据集

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.02-Loading-External-Datasets-in-Python.ipynb

    • 使用Matplotlib可视化数据

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.03-Visualizing-Data-Using-Matplotlib.ipynb

    • 使用OpenCV的TrainData容器处理数据

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.05-Dealing-with-Data-Using-the-OpenCV-TrainData-Container-in-C%2B%2B.ipynb

  3. 监督学习的第一步

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.00-First-Steps-in-Supervised-Learning.ipynb

    • 用评分功能测量模型性能

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.01-Measuring-Model-Performance-with-Scoring-Functions.ipynb

    • 了解k-NN算法

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.02-Understanding-the-k-NN-Algorithm.ipynb

    • 使用回归模型预测持续成果

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.03-Using-Regression-Models-to-Predict-Continuous-Outcomes.ipynb

    • 应用拉索和岭回归

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.04-Applying-Lasso-and-Ridge-Regression.ipynb

    • 使用Logistic回归分类虹膜物种

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.05-Classifying-Iris-Species-Using-Logistic-Regression.ipynb

  4. 代表数据和工程特性

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.00-Representing-Data-and-Engineering-Features.ipynb

    • 预处理数据

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.01-Preprocessing-Data.ipynb

    • 减少数据的维度

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.02-Reducing-the-Dimensionality-of-the-Data.ipynb

    • 代表分类变量

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.03-Representing-Categorical-Variables.ipynb

    • 表示文本特征

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.04-Represening-Text-Features.ipynb

    • 代表图像

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.05-Representing-Images.ipynb

  5. 使用决策树进行医学诊断

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.00-Using-Decision-Trees-to-Make-a-Medical-Diagnosis.ipynb

    • 建立你的第一决策树

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.01-Building-Your-First-Decision-Tree.ipynb

    • 使用决策树诊断乳腺癌

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.02-Using-Decision-Trees-to-Diagnose-Breast-Cancer.ipynb

    • 使用决策树回归

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.03-Using-Decision-Trees-for-Regression.ipynb

  6. 用支持向量机检测行人

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.00-Detecting-Pedestrians-with-Support-Vector-Machines.ipynb

    • 实施您的第一支持向量机

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.01-Implementing-Your-First-Support-Vector-Machine.ipynb

    • 检测野外行人

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.02-Detecting-Pedestrians-in-the-Wild.ipynb

    • 附加SVM练习

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.03-Additional-SVM-Exercises.ipynb

  7. 用贝叶斯学习实现垃圾邮件过滤器

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/07.00-Implementing-a-Spam-Filter-with-Bayesian-Learning.ipynb

    • 实现我们的第一个贝叶斯分类器

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/07.01-Implementing-Our-First-Bayesian-Classifier.ipynb

    • 分类电子邮件使用朴素贝叶斯

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/07.02-Classifying-Emails-Using-Naive-Bayes.ipynb

  8. 用无监督学习发现隐藏的结构

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.00-Discovering-Hidden-Structures-with-Unsupervised-Learning.ipynb

    • 了解k均值聚类

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.01-Understanding-k-Means-Clustering.ipynb

    • 使用k-Means压缩彩色图像

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.02-Compressing-Color-Images-Using-k-Means.ipynb

    • 使用k-Means分类手写数字

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.03-Classifying-Handwritten-Digits-Using-k-Means.ipynb

    • 实施聚集层次聚类

    • https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.04-Implementing-Agglomerative-Hierarchical-Clustering.ipynb

  9. 使用深度学习分类手写数字

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.00-Using-Deep-Learning-to-Classify-Handwritten-Digits.ipynb

    • 了解感知器

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.01-Understanding-Perceptrons.ipynb

    • 在OpenCV中实现多层感知器

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.02-Implementing-a-Multi-Layer-Perceptron-in-OpenCV.ipynb

    • 认识深度学习

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.03-Getting-Acquainted-with-Deep-Learning.ipynb

    • 在OpenCV中培训MLP以分类手写数字

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.04-Training-an-MLP-in-OpenCV-to-Classify-Handwritten-Digits.ipynb

    • 训练深层神经网络使用Keras分类手写数字

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.05-Training-a-Deep-Neural-Net-to-Classify-Handwritten-Digits-Using-Keras.ipynb

  10. 将不同的算法合并成一个合奏

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.00-Combining-Different-Algorithms-Into-an-Ensemble.ipynb

    • 了解组合方法

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.01-Understanding-Ensemble-Methods.ipynb

    • 将决策树组合成随机森林

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.02-Combining-Decision-Trees-Into-a-Random-Forest.ipynb

    • 使用随机森林进行人脸识别

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.03-Using-Random-Forests-for-Face-Recognition.ipynb

    • 实施AdaBoost

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.04-Implementing-AdaBoost.ipynb

    • 将不同的模型组合成投票分类器

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.05-Combining-Different-Models-Into-a-Voting-Classifier.ipynb

  11. 使用超参数调整选择正确的模型

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.00-Selecting-the-Right-Model-with-Hyper-Parameter-Tuning.ipynb

    • 评估模型

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.01-Evaluating-a-Model.ipynb

    • 了解交叉验证,Bootstrapping和McNemar的测试

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.02-Understanding-Cross-Validation-Bootstrapping-and-McNemar's-Test.ipynb

    • 使用网格搜索调整超参数

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.03-Tuning-Hyperparameters-with-Grid-Search.ipynb

    • 链接算法一起形成管道

      https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.04-Chaining-Algorithms-Together-to-Form-a-Pipeline.ipynb

  12. 结束语

    https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/12.00-Wrapping-Up.ipynb

热门文章推荐

重磅|腾讯公布首批25个ai加速器项目名单!

国家战略:国务院发布《新一代人工智能发展规划》

京东发布登月机器学习平台:为第四次零售革命输出AI能力

重磅|中国870家ai公司融资905亿人民币!

浙大女科学家解密:从最后一面逆袭第一名!

资料|麻省理工课程:深度学习数据基础(ppt)

推荐|40张动态图详解全部传感器关注原理!

警惕!中国人工智能有一只推荐算法叫:莆田系算法!

百度Apollo:无人驾驶技术发展成熟仅需3年左右!

阿里出了个Take Go无人便利店,比亚马逊还厉害!

登录查看更多
0

相关内容

一个跨平台的计算机视觉处理库,全称是Open Source Computer Vision。
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
【新书】Pro 机器学习算法Python实现,379页pdf
专知会员服务
199+阅读 · 2020年2月11日
《机器学习实战》代码(基于Python3)
专知
32+阅读 · 2019年10月14日
Python机器学习课程(代码与教程)
专知
36+阅读 · 2019年5月13日
用Python实现流行机器学习算法
Python程序员
21+阅读 · 2018年12月31日
10行代码实现目标检测,请收下这份教程
免费|机器学习算法Python实现
全球人工智能
5+阅读 · 2018年1月2日
GitHub最著名的20个Python机器学习项目!
THU数据派
6+阅读 · 2017年12月14日
GitHub最著名的20个Python机器学习项目
全球人工智能
9+阅读 · 2017年12月7日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
21+阅读 · 2019年3月25日
Arxiv
8+阅读 · 2019年3月21日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
《机器学习实战》代码(基于Python3)
专知
32+阅读 · 2019年10月14日
Python机器学习课程(代码与教程)
专知
36+阅读 · 2019年5月13日
用Python实现流行机器学习算法
Python程序员
21+阅读 · 2018年12月31日
10行代码实现目标检测,请收下这份教程
免费|机器学习算法Python实现
全球人工智能
5+阅读 · 2018年1月2日
GitHub最著名的20个Python机器学习项目!
THU数据派
6+阅读 · 2017年12月14日
GitHub最著名的20个Python机器学习项目
全球人工智能
9+阅读 · 2017年12月7日
Top
微信扫码咨询专知VIP会员