TensorFlow技术主管Peter Wardan:机器学习的未来是小而美

2019 年 7 月 5 日 大数据文摘

大数据文摘授权转载自OReillyAI


Pete Wardan任谷歌TensorFlow移动和嵌入式团队的leader,在O'Reilly AI Conference 2019的Keynote演讲环节,他对机器学习的未来进行了深度剖析。他认为机器学习的未来就是以小为美。未来,微处理器将如何与机器学习共同合作?能否在技术上取得突破?这些问题值得深思。


想象一下这样一个世界:数千亿台设备不仅收集数据,而且会将数据转化为可操作的意见,而这些意见可以改善数十亿人的生活。


而要做到这一点,我们需要机器学习。但是一般来说,机器学习会消耗大量的系统资源。因此,低功耗,低成本的机器学习是目前需要探索并寻求突破的。


与此同时,深度神经网络也越来越多地被应用于改进很多东西,从广告系统到自动驾驶汽车原型,因此,它们也注定要改造微型计算机(即微控制器)。


因此,Pete在演讲中指出,微型处理器、内嵌处理器是机器学习的未来。


微处理器已无处不在


Pete首先用Alexa做了一个小演示,展示了基于网络的机器学习模型如何在小型的、内嵌式的处理器上去运行的,以及它可以持续几周的时间。


之所以选择用Alexa演示,是因为这台设备没有联网,也没有Wi-Fi和蓝牙,它只是在20KB的模型上运行,这个微型处理器也只有几百KB的内存。而这个模型仅仅靠钮扣电池供电,就能独立运行数周的时间。


这一点非常重要。因为全世界有2500亿个微处理器,每年出货量达到了 400亿,每年都有20%的增幅,平均成本不到50美分。这样的产品已经非常便宜而且无处不在。



此外,CPU如今也已经很便宜了,几乎都是免费的。但是我们把处理器安装到设备上之后,却要专门接电线为其供电,比如在机场,这个供电系统可能就要花几千美金。


除了布线问题,还在于,某些场合,比如手术室、工厂车间,可能并没有合适的地方去增加电源插座等设备。所以说,这非常不合理。能源供应问题成了很多设备的限制因素。


手机需频繁充电的首要原因——高能耗


以我们现在每天都离不开的手机为例。虽然手机不需要连接外部的电源,但它每天都需要充电。如果你有几十个甚至几百个电子设备需要进行打理的话,那可能你所有的时间都花在充电上了。所以很多设备,我们只好采取即插即用的办法来供电。



智能手机的能耗情况如何,为什么总要频繁充电?请参考以下数据:

  • 显示器大约使用400毫瓦

  • 有源蜂窝无线电大约使用800毫瓦

  • 蓝牙大约使用100毫瓦

  • 加速度计使用21毫瓦

  • 陀螺仪消耗130毫瓦

  • GPS消耗176毫瓦


如果我们把手机的能耗降到1毫瓦以下,那么仅仅一枚钮扣电池就能支持手机运行一个月。我们需要在这样的能耗限制下进行设计,才能保证无所不在的微处理计算和人工智能技术相得益彰。


传感器数据被浪费的原因——传输能耗太大


现有的CPU做计算本身是基本没有功耗的,它可以把功耗降到几百微瓦的水平,传感器也是如此。比如,麦克风的功耗也非常低,还有图形传感器。麦克风可能是几百微瓦的水平,传感器也是可以降到1毫瓦的水平。


因此,微处理器和传感器可以把功耗降到非常低的程度。低功耗的解决方案大大提升了传感器收集数据的能力,它们能够更频繁地查看需要的信息。


然而,虽然传感器能够以很低的功耗获得巨量的数据,但是这些却没有得到充分的应用。


比如,几年前,一家卫星公司,能够拍摄很多高清晰度的图片。但是因为带宽的问题,每个小时只能下载几百MB的数据,所以卫星和地面的通讯成本太高了,最终我们能得到的图片只是很少的一部分。


此外,比如在工厂里面的温度计,它们可以获取很多的数据。但是工厂并没有那么多的电力把这些数据上传到云端,所以很多数据也都被浪费了。


深度学习与微处理器的完美配合


对于现有的这些问题,技术应该发挥什么样的作用?如何能够把大量的传感器的数据利用起来,把它的价值发挥出来?能否降低设备能耗?


Pete认为还有很大的市场等待科技去解锁


机器学习在这方面就可以发挥非常重要的作用,具体来说,是深度学习。因为深度学习才能够最有效地把这些混沌的、非结构性质的数据利用起来。


深度学习可以处理大量未标记的数据


很少有人意识到深度学习和微处理器(MCU)的匹配程度。深度学习实际上是基于计算,而不是依靠通讯或者数据读取来运行的。因此,我们不需要很大的内存,也不需要大量访问内存。这恰好也符合微处理器的设计,它只有几百KB的内存,同时每秒可以运行几千万甚至上亿次的指令。


所以我们可以用很低的功耗来满足它的学习或者训练目的。如果我们知道对于一个给定的神经网络系统,它需要5皮焦(pJ)的能耗来执行一个操作,如果用最小的图象识别,它需要2200万的浮点计算,那么它将共需要5皮焦*22,000,000=110微焦(µJ)的能量来执行这个操作。如果每秒分析一帧,那只需要110微瓦,如此,用钮扣电池就能供一年的电量,而且不需要对现有的硬件改进。


谷歌的团队曾在2014年开发了一个13KB的模型来进行语音识别,而苹果也在做类似的研发工作。所以这些语音识别团队,就可以在非联网的微型处理器上来进行机器学习和训练。


TensorFlow Lite——赋予移动终端机器学习的能力


2017年,谷歌在Google I/O大会推出TensorFlow Lite,是专门针对移动设备上可运行的深度网络模型简单版。但当时只是开发者预览版,未推出正式版。


2019年3月,TensorFlow Lite嵌入式平台发布了第一个实验原型。这是由SparkFun构建的开发板的原型,它有一个Cortex M4处理器,具有384KB的RAM和1MB的闪存存储。该处理器功率极低,在许多情况下功耗不到1毫瓦,因此它可以仅凭小型纽扣电池运行很多天。


Pete在安卓开发峰会上介绍TensorFlow Lite


它完全在本地嵌入式芯片上运行,无需任何互联网连接,因此最好将其作为语音接口系统的一部分。该模型本身占用的存储空间不到20KB,TensorFlow Lite代码的占用空间仅为25KB的Flash,而且只需要 30KB的RAM即可运行。


TensorFlow Lite 的目标便是移动和嵌入式设备,它赋予了这些设备在终端本地运行机器学习模型的能力,从而不再需要向云端服务器发送数据。这样一来,不但节省了网络流量、减少了时间开销,而且还充分帮助用户保护自己的隐私和敏感信息。


TensorFlow Lite被用来解决了移动设备的图像分类、物体检测、智能聊天的问题。



深度学习未来的应用


深度学习最关键的在于,它特别适合把传感器的数据转化为非常有价值的资产。


全语音界面


深度学习的一个「杀手」应用,也许在不久的将来就会实现,那便是:全语音的界面。这样的界面用50美分的芯片就可以实现,同时,用一个钮扣电池就可以维持一年的运行。如此一来,我们可以只用语音操控,而不再需要开关或者是按纽了。所有的机器、设备都可以使用语音通讯的界面。


这种便宜的芯片还可以用于农业的用途,比如通过图形识别可以用很低的成本来识别有害杂草,农业工作者便可以精准地施用农药。


预维护模式


另外,还有预测式维护。我们可以预先知道哪些机器可以出故障。比如针对汽车故障,人不可能到汽车里面去看发动机哪出了什么问题,或者听出马达的声音出现了问题,但是我们可以对模型进行训练,把这些设备直接插到系统里面,不需要做新的布线或联网,这个设备就可以直接告诉你:系统好像出问题了,设备需要及时维护、维修。当然,这个模型并不需要持续上网发出设备信息,只是当要发生重大事故或者隐患的时候才会发出通讯。


深度学习未来的应用


未来的世界有更多的可能性,现在人工智能对于我们,就像八十年代的电脑一样。我们不知道它会发展成什么样子,但是我们可以想象一下我们目前面对的各种问题和挑战,在工作中面临的困难。如何用小小的芯片进行机器学习?这方面我们可以有新的角度去探索,也有新的研究成果去发挥作用。


关于Pete Warden


Pete Warden是谷歌TensorFlow Mobile团队的技术主管,曾担任 Jetpac 的首席技术官,该公司于 2014 年被谷歌收购,因其深度学习技术优化,可在移动和嵌入式设备上运行。他之前曾在Apple从事 GPU 优化图像处理工作。



实习/全职编辑记者招聘ing

加入我们,亲身体验一家专业科技媒体采写的每个细节,在最有前景的行业,和一群遍布全球最优秀的人一起成长。坐标北京·清华东门,在大数据文摘主页对话页回复“招聘”了解详情。简历请直接发送至zz@bigdatadigest.cn



点「在看」的人都变好看了
登录查看更多
0

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【Google】利用AUTOML实现加速感知神经网络设计
专知会员服务
29+阅读 · 2020年3月5日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
【斯坦福&Google】面向机器人的机器学习,63页PPT
专知会员服务
25+阅读 · 2019年11月19日
【机器学习】无处不在的机器学习
产业智能官
4+阅读 · 2019年8月18日
开发 | 用 Python 做机器学习不得不收藏的重要库
AI科技评论
5+阅读 · 2019年1月8日
未来20年(2019—2039)的50个技术预测
全球创新论坛
5+阅读 · 2018年12月16日
2019年机器学习:追踪人工智能发展之路
人工智能学家
4+阅读 · 2018年10月14日
“搞机器学习没前途”
CSDN
236+阅读 · 2018年9月12日
【机器学习】如何通过机器学习预测维护设备?
产业智能官
16+阅读 · 2018年7月9日
Arxiv
14+阅读 · 2020年1月27日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关资讯
【机器学习】无处不在的机器学习
产业智能官
4+阅读 · 2019年8月18日
开发 | 用 Python 做机器学习不得不收藏的重要库
AI科技评论
5+阅读 · 2019年1月8日
未来20年(2019—2039)的50个技术预测
全球创新论坛
5+阅读 · 2018年12月16日
2019年机器学习:追踪人工智能发展之路
人工智能学家
4+阅读 · 2018年10月14日
“搞机器学习没前途”
CSDN
236+阅读 · 2018年9月12日
【机器学习】如何通过机器学习预测维护设备?
产业智能官
16+阅读 · 2018年7月9日
相关论文
Arxiv
14+阅读 · 2020年1月27日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
6+阅读 · 2018年2月28日
Top
微信扫码咨询专知VIP会员