报告嘉宾:金连文(华南理工大学)
报告时间:2019年10月16日(星期三)晚上20:00(北京时间)
报告题目:浅谈文字识别:新思考、新挑战及新机遇
报告人简介:
金连文教授1991年本科毕业于中国科技大学,1996年于华南理工大学获博士学位,目前为华南理工大学二级教授,博士生导师,兼任中国图像图形学学会(CSIG)常务理事、广东省图像图形学会副理事长、CSIG文档图像分析与识别专委会主任、CSIG机器视觉专委会常务委员、CAAI模式识别专委会常务委员、CCF计算机视觉专委会委员等职。主要研究领域为深度学习、机器学习、文字识别、计算机视觉及应用等,在IEEE TPAIMI、IEEE TNNLS、IEEE TIFS、IEEE TMM、IEEE TCSVT、IEEE TCYB、IEEE TITS、IEEE TAFFC、Pattern Recognition、Information Science、Neurocomputing等主流国际期刊上发表学术论文60余篇(其中4篇论文先后入选ESI高被引论文),在ICDAR、CVPR、AAAI、IJCAI等主流国际会议发表论文100余篇,获得发明专利授权50余项,荣获省部级科技奖励5次,荣获国际学术竞赛第一名11次。
个人主页:
http://www.dlvc-lab.net/lianwen/
报告摘要:
文字识别技术在图像理解、信息录入、智慧教育、智慧金融、信息搜索、信息安全等诸多领域有非常广阔的应用前景,是目前计算机视觉及机器学习领域的研究热点问题之一。基于深度学习的文字识别技术近年来取得了极大进步及发展,虽然不少方法在许多复杂场景及各种数据集上取得了卓越性能,但仍存在不少问题及挑战。在此报告中,我将在简要回顾近期研究进展的基础上,对目前文字识别领域存在的一些重要问题及挑战谈一点个人的思考,并对未来发展方向进行讨论和展望。
参考文献:
[1] Zecheng Xie, Yiaoxiong Huang, Yuanzhi Zhu, Lianwen Jin, Yuliang Liu, Lele Xie, Aggregation Cross-Entropy for Sequence Recognition, CVPR 2019.
[2] Yuliang Liu, Lianwen Jin, Zecheng Xie, Canjie Luo, et al., Tightness-aware Evaluation Protocol for Scene Text Detection, CVPR 2019.
[3] Yuliang Liu, Sheng Zhang, Lianwen Jin, et al., Omnidirectional Scene Text Detection with Sequential-free Box Discretization, IJCAI 2019.
[4] Lele Xie, Yuliang Liu, Lianwen Jin, Zecheng Xie, DeRPN: Taking a further step toward more general object detection, AAAI 2019.
[5] Canjie Luo, Lianwen Jin, Zenghui Sun, MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition, Pattern Recognition, vol. 90, no.6, pp109-118, 2019.